

Welcome to Mull’s documentation!

	Getting Started

	Features

	Introduction to Mutation Testing

	Installation
	Install on Ubuntu

	Install on macOS

	Tutorials
	Hello World Example

	Compilation Database and Junk Mutations

	Keeping mutants under control

	Working with SQLite report

	Supported Mutation Operators

	Command Line Reference

	How Mull works
	Design

	Mutations search

	Supported mutation operators

	Reporting

	Platform support

	Test coverage

	Advantages

	Known issue: Precision

	Historical note: LLVM JIT deprecation (January 2021)

	Paper

	Additional information about Mull

	Hacking On Mull
	Internals

	Development Setup using Vagrant

	Local Development Setup

Getting Started

Hello there, we are glad to have you here!

If you are new to the subject, then we recommend you start with the little Introduction into Mutation Testing.
Then, install Mull and go through the tutorials.

As soon as you are comfortable with the basics you may want to learn about various options and settings Mull has,
as well as pick the right set of available mutation operators.

If you are curious about how Mull works under the hood: How Mull works.

If you want to dive deeper and look behind the curtains, then we encourage you to hack on Mull.

If you have any questions feel free to open an issue [https://github.com/mull-project/mull/issues/new] or join the great community of researchers and practitioners on Discord [https://discord.gg/Hphp7dW].

Features

	Mull enables mutation testing of C and C++ projects.

	Mull expects a passing test suite to exit with 0. If the test suite fails, it
must exit with a non-zero exit code. Any C/C++ test framework that follows
this convention is supported by Mull.

	Supported Mutations.

	Generate results in various formats:

	IDE Reporter: compiler-like warnings are printed to standard output

	sample.cpp:15:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]

	SQLite Reporter: SQLite database file.

	JSON file that conforms mutation-testing-elements schema [https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/mutation-testing-report-schema]

	Mutation Testing Elements HTML Reporter [https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/mutation-testing-elements]

	Parallelized execution of tests

	Mull requires test programs to be compiled with Clang/LLVM. Mull supports
all LLVM versions starting from LLVM 6.

For a more detailed description of Mull’s architecture, see
How Mull works.

Introduction to Mutation Testing

Mutation Testing is a fault-based software testing technique. It evaluates the quality of a test suite by
calculating mutation score and showing gaps in semantic coverage. It does so by creating several
slightly modified versions of the original program, mutants, and running the test suite against each of them.
A mutant is considered to be killed if the test suite detects the change, or survived otherwise.
A mutant is killed if at least one of the tests starts failing.

Each mutation of original program is based on a set of mutation operators (or mutators). A mutator
is a predefined rule that either changes or removes an existing statement or expression in the original program.
Each rule is deterministic: the same set of mutation operators applied to the same program results in the
same set of mutants.

Mutation score is a ratio of killed vs total mutants. E.g., if seven out of ten mutants are killed,
then the score is 0.7, or 70%. The higher the score the better.

Installation

Mull comes with a number of precompiled binaries for macOS and Ubuntu.
There are two flavors of packages:

	stable [https://cloudsmith.io/~mull-project/repos/mull-stable/packages/] - tagged releases (0.8.0, 0.9.0, etc.)

	nightly [https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/] - built for each PR

Alternatively, you can find packages on Github [https://github.com/mull-project/mull/releases].

Please, refer to the Hacking on Mull to build Mull from sources.

Install on Ubuntu

Mull supports Ubuntu 18.04 and 20.04.

Setup apt-repository:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-stable/setup.deb.sh' | sudo -E bash

_Note: Mull uses [Cloudsmith](https://cloudsmith.io) for package distribution.
The above script detects your OS and sets up the apt repo automagically._

Install the package:

sudo apt-get update
sudo apt-get install mull

Check if everything works:

$ mull-cxx --version
Mull: LLVM-based mutation testing
https://github.com/mull-project/mull
Version: 0.9.0
Commit: 9f2d43c
Date: 07 Jan 2021
LLVM: 11.0.0

You can also get the latest “nightly” build using the corresponding source:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-nightly/setup.deb.sh' | sudo -E bash

Install on macOS

Get the latest version here Github Releases [https://github.com/mull-project/mull/releases/latest].

Or install via Homebrew:

brew install mull-project/mull/mull-stable

Check the installation:

$ mull-cxx --version
Mull: LLVM-based mutation testing
https://github.com/mull-project/mull
Version: 0.9.0
Commit: 9f2d43c
Date: 07 Jan 2020
LLVM: 11.0.0

You can also get the latest “nightly” build from here [https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/].

Tutorials

	Hello World Example

	Compilation Database and Junk Mutations

	Keeping mutants under control

	Working with SQLite report

Hello World Example

The goal of this tutorial is to demonstrate how to run Mull on minimal C
programs. After reading it you should have a basic understanding of what
arguments Mull needs in order to create mutations in your programs, run the
mutants and generate mutation testing reports.

TL;DR version: if you want to run a single copy and paste example, scroll
down to Killing mutants again, all killed below.

Step 1: Checking version

The tutorial assumes that you have installed Mull on your system and
have the mull-cxx executable available:

$ mull-cxx -version
Mull: LLVM-based mutation testing
https://github.com/mull-project/mull
Version: 0.8.0
Commit: f94f38ed
Date: 04 Jan 2021
LLVM: 9.0.0

Step 2: Enabling Bitcode

The most important thing that Mull needs to know is the path to your program
which must be a valid C or C++ executable. Let’s create a C program:

int main() {
 return 0;
}

and compile it:

$ clang main.cpp -o hello-world

We can already try running mull-cxx and see what happens:

$ mull-cxx hello-world
[info] Extracting bitcode from executable (threads: 1)
[warning] No bitcode: x86_64
 [################################] 1/1. Finished in 3ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 409ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 413ms

Notice the No bitcode: x86_64 warning! Now Mull is already trying to work
with our executable but there is still one important detail that is missing: we
haven’t compiled the program with a special option that embeds LLVM bitcode
into our executable.

Mull works on a level of LLVM Bitcode relying on debug information to show
results, therefore you should build your project with -fembed-bitcode and
-g flags enabled.

Let’s try again:

$ clang -fembed-bitcode -g main.cpp -o hello-world
$ mull-cxx hello-world
[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Loading bitcode files (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 336ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 1ms
[info] Applying function filter: no debug info (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Applying function filter: file path (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Instruction selection (threads: 1)
 [################################] 1/1. Finished in 13ms
[info] Searching mutants across functions (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 400ms

The No bitcode: x86_64 warning has gone and now we can focus on another
important part of the output: No mutants found. Mutation score: infinitely
high. We have our executable but we don’t have any code so there is nothing
Mull could work on.

Step 3: Killing mutants, one survived

Let’s add some code:

bool valid_age(int age) {
 if (age >= 21) {
 return true;
 }
 return false;
}

int main() {
 int test1 = valid_age(25) == true;
 if (!test1) {
 /// test failed
 return 1;
 }

 int test2 = valid_age(20) == false;
 if (!test2) {
 /// test failed
 return 1;
 }

 /// success
 return 0;
}

We compile this new code using the bitcode flags and run the Mull again. This
time we also want to add additional flag -ide-reporter-show-killed which
tells Mull to print killed mutations. Normally we are not interested in seeing
killed mutations in console output but in this tutorial we want to be more
verbose.

$ clang -fembed-bitcode -g main.cpp -o hello-world
$ mull-cxx -ide-reporter-show-killed hello-world
[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 6ms
[info] Loading bitcode files (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 341ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Applying function filter: no debug info (threads: 3)
 [################################] 3/3. Finished in 0ms
[info] Applying function filter: file path (threads: 2)
 [################################] 2/2. Finished in 0ms
[info] Instruction selection (threads: 2)
 [################################] 2/2. Finished in 11ms
[info] Searching mutants across functions (threads: 2)
 [################################] 2/2. Finished in 10ms
[info] Applying filter: no debug info (threads: 6)
 [################################] 6/6. Finished in 1ms
[info] Applying filter: file path (threads: 6)
 [################################] 6/6. Finished in 0ms
[info] Applying filter: junk (threads: 6)
 [################################] 6/6. Finished in 11ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Cloning functions for mutation (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Removing original functions (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Redirect mutated functions (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Applying mutations (threads: 1)
 [################################] 4/4. Finished in 12ms
[info] Compiling original code (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 109ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 360ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 18ms
[info] Running mutants (threads: 4)
 [################################] 4/4. Finished in 63ms
[info] Killed mutants (3/4):
/tmp/sc-PzmaCNIRu/main.cpp:2:15: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
 if (age >= 21) {
 ^
/tmp/sc-PzmaCNIRu/main.cpp:9:33: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 int test1 = valid_age(25) == true;
 ^
/tmp/sc-PzmaCNIRu/main.cpp:15:33: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 int test2 = valid_age(20) == false;
 ^
[info] Survived mutants (1/4):
/tmp/sc-PzmaCNIRu/main.cpp:2:15: warning: Survived: Replaced >= with > [cxx_ge_to_gt]
 if (age >= 21) {
 ^
[info] Mutation score: 75%
[info] Total execution time: 996ms

What we are seeing now is four mutations: three mutations are Killed, another
one is Survived. If we take a closer look at the code and the contents
of the tests test1 and test2 we will see that one important test case
is missing: the one that would test the age 21 and this is exactly
what the survived mutation is about: Mull has replaced age >= 21 with
age > 21 and neither of the two tests have detected the mutation.

Let’s add the third test case and see what happens.

Step 4: Killing mutants again, all killed

The code:

bool valid_age(int age) {
 if (age >= 21) {
 return true;
 }
 return false;
}

int main() {
 bool test1 = valid_age(25) == true;
 if (!test1) {
 /// test failed
 return 1;
 }

 bool test2 = valid_age(20) == false;
 if (!test2) {
 /// test failed
 return 1;
 }

 bool test3 = valid_age(21) == true;
 if (!test3) {
 /// test failed
 return 1;
 }

 /// success
 return 0;
}

$ clang -fembed-bitcode -g main.cpp -o hello-world
$ mull-cxx -ide-reporter-show-killed hello-world
[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 4ms
[info] Loading bitcode files (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 7ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Applying function filter: no debug info (threads: 3)
 [################################] 3/3. Finished in 0ms
[info] Applying function filter: file path (threads: 2)
 [################################] 2/2. Finished in 0ms
[info] Instruction selection (threads: 2)
 [################################] 2/2. Finished in 12ms
[info] Searching mutants across functions (threads: 2)
 [################################] 2/2. Finished in 10ms
[info] Applying filter: no debug info (threads: 5)
 [################################] 5/5. Finished in 0ms
[info] Applying filter: file path (threads: 5)
 [################################] 5/5. Finished in 1ms
[info] Applying filter: junk (threads: 5)
 [################################] 5/5. Finished in 12ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Cloning functions for mutation (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Removing original functions (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Redirect mutated functions (threads: 1)
 [################################] 1/1. Finished in 10ms
[info] Applying mutations (threads: 1)
 [################################] 5/5. Finished in 0ms
[info] Compiling original code (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 62ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 311ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 19ms
[info] Running mutants (threads: 5)
 [################################] 5/5. Finished in 63ms
[info] Killed mutants (5/5):
/tmp/sc-PzmaCNIRu/main.cpp:2:15: warning: Killed: Replaced >= with > [cxx_ge_to_gt]
 if (age >= 21) {
 ^
/tmp/sc-PzmaCNIRu/main.cpp:2:15: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
 if (age >= 21) {
 ^
/tmp/sc-PzmaCNIRu/main.cpp:9:34: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test1 = valid_age(25) == true;
 ^
/tmp/sc-PzmaCNIRu/main.cpp:15:34: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test2 = valid_age(20) == false;
 ^
/tmp/sc-PzmaCNIRu/main.cpp:21:34: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test3 = valid_age(21) == true;
 ^
[info] All mutations have been killed
[info] Mutation score: 100%
[info] Total execution time: 554ms

In this last run, we see that all mutants were killed since we covered with tests
all cases around the <=.

Summary

This is a short summary of what we have learned in the tutorial.
Your code has to be compiled with -fembed-bitcode -g compile flags:

	Mull expects embedded bitcode files to be present in a binary executable
(ensured by -fembed-bitcode).

	Mull needs debug information to be included by the compiler (enabled by
-g). Mull uses this information to find mutations in bitcode and source
code.

The next step is to learn about Compilation Database and Junk Mutations

Compilation Database and Junk Mutations

This tutorial shows how to apply Mull on a real-world project and
how to overcome typical issues you might face.

This tutorial uses fmtlib [https://github.com/fmtlib/fmt] as an example.

Get sources and build fmtlib:

git clone https://github.com/fmtlib/fmt.git
cd fmt
mkdir build.dir
cd build.dir
cmake \
 -DCMAKE_CXX_FLAGS="-fembed-bitcode -g -O0" \
 -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
make core-test

Note: last tested against commit 018688da2a58ba25cdf173bd899734f755adb11a

Run Mull against the core-test:

mull-cxx -mutators=cxx_add_to_sub ./bin/core-test

Right now you should see a weird and long error message by the end of execution.
Here is a snippet:

/// skipped
[info] Applying mutations (threads: 1)
 [################################] 10/10. Finished in 11ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 5671ms
[info] Link mutated program (threads: 1)
[error] Cannot link program
status: Failed
time: 20096ms
exit: -60
command: clang /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-b5963a.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-62252e.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-22ed08.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-84dd4a.o -o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-84a88a.exe
stdout:
stderr: Undefined symbols for architecture x86_64:
 "std::logic_error::what() const", referenced from:
 vtable for assertion_failure in mull-b5963a.o
 "std::runtime_error::what() const", referenced from:
 vtable for testing::internal::GoogleTestFailureException in mull-22ed08.o
 vtable for fmt::v7::format_error in mull-84dd4a.o
 vtable for fmt::v7::system_error in mull-84dd4a.o
/// skipped

In order to do the job, Mull takes the executable, deconstructs it into a number
of pieces, inserts mutations into those pieces, and then constructs the executable
again. In order to re-build the mutated program, Mull needs a linker. As a safe default,
it just uses clang which works in most of the cases. However, in this case
we deal with C++ which needs a corresponding C++ linker. Instead we should be
using clang++, which will do the job just fine.

Note: on Linux you may have to specify clang-<version> or clang++-<version>,
where <version> corresponds to the version of clang installed

Try this:

mull-cxx --linker=clang++ -mutators=cxx_add_to_sub ./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 194ms
[info] Loading bitcode files (threads: 4)
 [################################] 4/4. Finished in 484ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 12ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Applying function filter: no debug info (threads: 8)
 [################################] 12812/12812. Finished in 26ms
[info] Applying function filter: file path (threads: 8)
 [################################] 12418/12418. Finished in 68ms
[info] Instruction selection (threads: 8)
 [################################] 12418/12418. Finished in 291ms
[info] Searching mutants across functions (threads: 8)
 [################################] 12418/12418. Finished in 42ms
[info] Applying filter: no debug info (threads: 8)
 [################################] 863/863. Finished in 1ms
[info] Applying filter: file path (threads: 8)
 [################################] 863/863. Finished in 11ms
[info] Applying filter: junk (threads: 8)
/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc:39:10: fatal error: 'gtest.h' file not found
#include "gtest.h"
 ^~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc:8:10: fatal error: 'algorithm' file not found
#include <algorithm>
 ^~~~~~~~~~~
 [--------------------------------] 1/863
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"
 ^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
 [################################] 863/863. Finished in 160ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Cloning functions for mutation (threads: 4)
 [################################] 4/4. Finished in 51ms
[info] Removing original functions (threads: 4)
 [################################] 4/4. Finished in 43ms
[info] Redirect mutated functions (threads: 4)
 [################################] 4/4. Finished in 12ms
[info] Applying mutations (threads: 1)
 [################################] 10/10. Finished in 10ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 5623ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 402ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 597ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 30ms
[info] Running mutants (threads: 8)
 [################################] 10/10. Finished in 157ms
[info] Survived mutants (10/10):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:554:67: warning: Survived: Replaced + with - [cxx_add_to_sub]
 static_cast<unsigned int>(kMaxRandomSeed)) +
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:566:30: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int next_seed = seed + 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:734:37: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int last_in_range = begin + range_width - 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:9763:53: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int actual_to_skip = stack_frames_to_skip + 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
[info] Mutation score: 0%
[info] Total execution time: 8252ms

Almost everything works fine, except of those weird warnings:

/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"
 ^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.

That is because of junk mutations.

Junk Mutations

Not every mutation found at Bitcode level can be represented at the source
level. A mutation is called junk mutation if it exists on the bitcode level, but
cannot be achieved on the source code level. Mull filters them out by looking back at
the source code. It tries its best, but sometimes it cannot parse the file because it
doesn’t have enough information. To give all the information needed you should
provide compilation database [https://clang.llvm.org/docs/JSONCompilationDatabase.html],
or compilation flags, or both.

Please, note: Clang adds implicit header search paths, which must be added
explicitly via -compilation-flags. You can get them using the following
commands, for C and C++ respectively:

> clang -x c -c /dev/null -v
... skipped
#include <...> search starts here:
 /usr/local/include
 /opt/llvm/10.0.0/lib/clang/10.0.0/include
 /System/Library/Frameworks (framework directory)
 /Library/Frameworks (framework directory)
End of search list.

> clang++ -x c++ -c /dev/null -v
#include <...> search starts here:
 /opt/llvm/10.0.0/bin/../include/c++/v1
 /usr/local/include
 /opt/llvm/10.0.0/lib/clang/10.0.0/include
 /System/Library/Frameworks (framework directory)
 /Library/Frameworks (framework directory)
End of search list.

The paths on your machine might be different, but based on the output above you need the following include dirs:

/opt/llvm/10.0.0/include/c++/v1
/usr/local/include
/opt/llvm/10.0.0/lib/clang/10.0.0/include
/usr/include

Here is how you can run Mull with junk detection enabled:

mull-cxx \
 -linker=clang++ \
 -mutators=cxx_add_to_sub \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 182ms
[info] Loading bitcode files (threads: 4)
 [################################] 4/4. Finished in 409ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Applying function filter: no debug info (threads: 8)
 [################################] 12812/12812. Finished in 22ms
[info] Applying function filter: file path (threads: 8)
 [################################] 12418/12418. Finished in 71ms
[info] Instruction selection (threads: 8)
 [################################] 12418/12418. Finished in 270ms
[info] Searching mutants across functions (threads: 8)
 [################################] 12418/12418. Finished in 43ms
[info] Applying filter: no debug info (threads: 8)
 [################################] 863/863. Finished in 12ms
[info] Applying filter: file path (threads: 8)
 [################################] 863/863. Finished in 10ms
[info] Applying filter: junk (threads: 8)
 [################################] 863/863. Finished in 4531ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 1ms
[info] Cloning functions for mutation (threads: 4)
 [################################] 4/4. Finished in 439ms
[info] Removing original functions (threads: 4)
 [################################] 4/4. Finished in 241ms
[info] Redirect mutated functions (threads: 4)
 [################################] 4/4. Finished in 12ms
[info] Applying mutations (threads: 1)
 [################################] 350/350. Finished in 11ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 4570ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 292ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 614ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 30ms
[info] Running mutants (threads: 8)
 [################################] 350/350. Finished in 4421ms
[info] Survived mutants (305/350):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced + with - [cxx_add_to_sub]
 state_ = (1103515245U * state_ + 12345U) % kMaxRange;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2924:63: warning: Survived: Replaced + with - [cxx_add_to_sub]
 CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]);
 ^

/// skipped

/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1334:68: warning: Survived: Replaced + with - [cxx_add_to_sub]
 int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
 ^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1284:53: warning: Survived: Replaced + with - [cxx_add_to_sub]
 double_bigit result = bigits_[i] * wide_value + carry;
 ^
[info] Mutation score: 12%
[info] Total execution time: 16280ms

In the end, 305 out of 350 mutants survived. Why so? One of the reasons is
because most of the mutants are unreachable by the test suite.
You can learn how to handle this issue in the next tutorial: Keeping mutants under control

Keeping mutants under control

This tutorial shows you how to keep the number of mutants under control.
It builds on top of the Compilation Database and Junk Mutations
tutorial so make sure you go through that one first.

When you apply mutation testing for the first time, you might be overwhelmed by
the number of mutants - what do you do when you see that several hundred or thousands of mutants survived?

The right way to go about it is to put the number of mutants under control and
work through them incrementally.

Mutation Operators

If you apply Mull with the default set of mutation operators on fmtlib, you will get
around ~4000 mutants, ~3300 of which survive.

$ mull-cxx \
 -linker=clang++ \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test

/// skipped

[info] Survived mutants (3397/3946):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/core.h:734:19: warning: Survived: Replaced <= with < [cxx_le_to_lt]
 size_ = count <= capacity_ ? count : capacity_;
 ^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/core.h:1716:12: warning: Survived: Replaced >= with > [cxx_ge_to_gt]
 if (id >= detail::max_packed_args) return arg;
 ^
/// skipped

/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1283:51: warning: Survived: Replaced ++x with --x [cxx_pre_inc_to_pre_dec]
 for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
 ^
[info] Mutation score: 13%
[info] Total execution time: 89999ms

Going through all of them to see which ones deserve your attention is
simply impractical.

The easiest way to decrease this number is to pick one or two mutation operators.

Let’s see how the numbers change if we only use cxx_add_to_sub that replaces
all the a + b to a - b.

$ mull-cxx \
 -linker=clang++ \
 -mutators=cxx_add_to_sub \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test

/// skipped

[info] Survived mutants (305/350):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced + with - [cxx_add_to_sub]
 state_ = (1103515245U * state_ + 12345U) % kMaxRange;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
 ^
/// skipped
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1334:68: warning: Survived: Replaced + with - [cxx_add_to_sub]
 int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
 ^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1284:53: warning: Survived: Replaced + with - [cxx_add_to_sub]
 double_bigit result = bigits_[i] * wide_value + carry;
 ^
[info] Mutation score: 12%
[info] Total execution time: 18481ms

You are still getting plenty - 305 survived out of 350 total, but this is much more
manageable.

Filters

You may notice that the last run had, among others, the following mutants survived:

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced + with - [cxx_add_to_sub]
 state_ = (1103515245U * state_ + 12345U) % kMaxRange;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
 ^

Looking at the paths, it is clear that these mutants are part of the GoogleTest
framework (gmock-gtest-all.cc). It is very unlikely that you are interested
in seeing these in the result.
Mull comes with two path-based filters --exclude-path and --include-path.
You can use these to either exclude or include mutations based on their file-system location.
Let’s exclude everything related to GoogleTest:

$ mull-cxx \
 -linker=clang++ \
 -mutators=cxx_add_to_sub \
 -exclude-path=".*gtest.*" \
 -exclude-path=".*gmock.*" \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test
/// skipped

[info] Survived mutants (275/320):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:228:35: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
 ^

275/320 vs. 305/350. Better, but still too much.

Code Coverage

In fact, many of the survived mutants can never be detected by the test suite because
they are not reachable by any of the tests. We can leverage code coverage information
to cut off all those mutants.

For that to work, we need to gather the coverage info first.

$ cmake \
 -DCMAKE_CXX_FLAGS="-fembed-bitcode -g -O0 -fprofile-instr-generate -fcoverage-mapping" \
 -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
$ make core-test
$./bin/core-test

Running core-test with the coverage info enabled (-fprofile-instr-generate -fcoverage-mapping)
generates raw coverage info in the current folder. Currently, Mull doesn’t work with raw info,
so we need to post-process it manually:

$ llvm-profdata merge default.profraw -o default.profdata

Now we can pass default.profdata to Mull. Another important detail, now we
also need to tell Mull about additional linker flags - otherwise, it won’t be able
to reconstruct mutated executable. See the --linker-flags CLI option:

$ mull-cxx \
 -linker=clang++ \
 -linker-flags="-fprofile-instr-generate -fcoverage-mapping" \
 -mutators=cxx_add_to_sub \
 -exclude-path=".*gtest.*" \
 -exclude-path=".*gmock.*" \
 -coverage-info=default.profdata \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test
/// skipped

[info] Survived mutants (14/27):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:2129:37: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);
 ^
/// skipped
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format.h:1570:31: warning: Survived: Replaced + with - [cxx_add_to_sub]
 auto it = reserve(out, size + padding * specs.fill.size());
 ^
[info] Mutation score: 48%
[info] Total execution time: 14124ms

Now, we’ve got only 27 mutants instead of 4000 in the beginning - something we can work with.
It’s always a good idea to start with the code coverage in the first place.
In this case, even without filters and changing the set of mutation operators, we can decrease the number of mutants to something much more actionable.

As an exercise, try to remove -exclude-path and -mutators options and see
how many mutants you get.

(Spoiler alert: 563)

Working with SQLite report

Warning: the data model has changed and most of the tutorial is no longer relevant/applicable.
This tutorial will be updated for the next release.

From the very beginning, we didn’t want to impose our vision on treating the results of mutation testing. Some people do not care about the mutation score, while others do care, but want to calculate it slightly differently.

To solve this problem, Mull splits execution and reporting into separate phases.
What Mull does is apply mutation testing on a program, collect as much information as possible, and then pass this information to one of several reporters.

At the moment of writing, there are three reporters:

	IDEReporter: prints mutants in the format of clang warnings

	MutationTestingElementsReporter: emits a JSON-file compatible with Mutation Testing Elements [https://github.com/stryker-mutator/mutation-testing-elements].

	SQLiteReporter: saves all the information to an SQLite database

One of the ways to do a custom analysis of mutation testing results is to run queries against the SQLite database. The rest of this document describes how to work with Mull’s SQLite database.

Database Schema

The following picture describes part of the existing database:

[image: _images/db-schema.svg]Some fields and tables irrelevant for this document are omitted.

Let’s take a brief look at each table.

test

This table contains information about a particular test. A test, from Mull’s
perspective, is just a function. For UI reporting purposes, Mull records the
location of the function.

mutation_point

This is one of the core elements of Mull. The mutation point describes what was changed and where. The mutator field stores name of a mutation operator applied at this mutation point. The rest of the fields describe the physical location of the mutation.

execution_result

Execution results are stored separately from mutation points for the following reasons:

	a mutation point might be reachable by more than one test. Therefore Mull runs several tests against one mutation point

	to gather code coverage information Mull runs all the tests one by
one without any mutations involved

In other words, execution_result describes many-to-many relation between tests and mutations.

Empty mutation_point_id indicates that a test was run to gather code coverage information.

The status field stores a numerical value as described in the following table:

	Numeric value

	String Value

	Description

	1

	Failed

	test has failed (the exit code does not equal 0)

	2

	Passed

	test has passed (the exit code equals 0)

	3

	Timedout

	test execution took more time than expected

	4

	Crashed

	test program was terminated

	5

	AbnormalExit

	test program exited (some test frameworks call exit(1) when test fails)

	6

	DryRun

	test was not run (DryRun mode enabled)

	7

	FailFast

	mutant was killed by another test so this test run can be skipped

Running Queries

The benefit of having results in an SQLite database is that we can run as many queries as we want and to examine the results without re-running Mull, which can be a long-running task.

If you don’t have a sample project ready, then it is a good idea to check out the fmtlib tutorial.

To enable SQLite reporter, add -reporters=SQLite to the CLI options.
It is also recommended to specify the report name via -report-name, e.g.:

mull-cxx -test-framework=GoogleTest \
 -mutators=cxx_add_to_sub \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/5.0.0/include/c++/v1 \
 -isystem /opt/llvm/5.0.0/lib/clang/5.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 -reporters=SQLite \
 -report-name=tutorial \
 ./bin/core-test

In the end, you should see something like this:

[info] Results can be found at './tutorial.sqlite'

Open the database and enable better formatting (optional):

sqlite3 ./tutorial.sqlite
sqlite> .header on
sqlite> .mode column

Now you can examine contents of the database:

sqlite> .tables
config mutation_point mutation_result
execution_result mutation_point_debug test

sqlite> .schema execution_result
CREATE TABLE execution_result (
 test_id TEXT,
 mutation_point_id TEXT,
 status INT,
 duration INT,
 stdout TEXT,
 stderr TEXT
);

As you can see, the schema for execution_result matches the one on the picture above.

Basic exploration

Let’s check how many mutants:

sqlite> select count(*) from mutation_point;
count(*)

35

Let’s see some stats on the execution time:

sqlite> select avg(duration), max(duration) from execution_result;
avg(duration) max(duration)
---------------- -------------
5.23497267759563 76

Let’s see what’s wrong with that slow test run:

Note: Here, I use several queries to save some screen space. Locally you may combine this into one query just fine.

sqlite> select rowid, status, duration from execution_result order by duration desc limit 5;
rowid status duration
---------- ---------- ----------
73 3 76
54 1 22
55 1 19
179 1 17
5 2 14
sqlite> select test_id from execution_result where rowid = 73;
test_id

FormatDynArgsTest.Basic
sqlite> select mutation_point_id from execution_result where rowid = 73;
mutation_point_id

3539da16613cf5da12032f308b293b8f_3539da16613cf5da12032f308b293b8f_478_2_15_cxx_add_to_sub

Now, we now the exact test case and exact mutation we can identify their locations in the source code:

sqlite> select * from test where unique_id = "BufferTest.Access";
test_name unique_id location_file location_line
----------------- ----------------- --------------------------------------- -------------
BufferTest.Access BufferTest.Access /tmp/sc-UiYEtcmuH/fmt/test/core-test.cc 144

sqlite> select mutator, filename, line_number, column_number from mutation_point
 where unique_id = "3539da16613cf5da12032f308b293b8f_3539da16613cf5da12032f308b293b8f_478_2_15_cxx_add_to_sub";
mutator filename line_number column_number
-------------- -- ----------- -------------
cxx_add_to_sub /tmp/sc-UiYEtcmuH/fmt/include/fmt/format.h 1746 45

Deeper dive

Exploration via SQLite is cool, but let’s do some math and calculate the mutation score using SQL.

To calculate mutation score, we will use the following formula: # of killed mutants / # of all mutants, where killed means that the status of an execution_result is anything but Passed.

Counting all the killed mutants is not the most straightforward query, but
should still be bearable: select all the mutation points and then narrow down the results by selecting the ones where the execution status does not equal 2 (Passed).

sqlite> select mutation_point.unique_id as mutation_point_id from mutation_point
 inner join execution_result on execution_result.mutation_point_id = mutation_point.unique_id
 where execution_result.status <> 2
 group by mutation_point_id;

Reusing this query is a bit of a hassle, so it makes sense to create an SQL View which can be used as a normal table:

sqlite> create view killed_mutants as
 select mutation_point.unique_id as mutation_point_id from mutation_point
 inner join execution_result on execution_result.mutation_point_id = mutation_point.unique_id
 where execution_result.status <> 2
 group by mutation_point_id;
sqlite> select count(*) from killed_mutants;
count(*)

16

With the number of killed mutants in place we can calculate the mutation score:

sqlite> select round(
 (select count(*) from killed_mutants) * 1.0 /
 (select count(*) from mutation_point) * 100) as score;
score

46.0

Gotchas

One important thing to remember: by default Mull also stores stderr and stdout
of each test run, which can blow up the size of the database by tens on gigabytes.

If you don’t need the stdout/stderr, then it is recommended to disable it via one of the following options --no-output, --no-test-output, --no-mutant-output.

Alternatively, you can strip this information from the database using this query:

begin transaction;
create temporary table t1_backup as select test_id, mutation_point_id, status, duration FROM execution_result;
drop table execution_result;
create table execution_result as select * FROM t1_backup;
drop table t1_backup;
commit;
vacuum;

Supported Mutation Operators

	Operator Name

	Operator Semantics

	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	remove_void_function_mutator

	Removes calls to a function returning void

	replace_call_mutator

	Replaces call to a function with 42

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

Command Line Reference

	--workers number

	How many threads to use

	--timeout number

	Timeout per test run (milliseconds)

	--dry-run

	Skips real mutants execution. Disabled by default

	--report-name filename

	Filename for the report (only for supported reporters). Defaults to <timestamp>.<extension>

	--report-dir directory

	Where to store report (defaults to ‘.’)

	--enable-ast

	Enable “white” AST search (disabled by default)

	--reporters reporter

	Choose reporters:

	IDE

	Prints compiler-like warnings into stdout

	SQLite

	Saves results into an SQLite database

	Elements

	Generates mutation-testing-elements compatible JSON file

	--ide-reporter-show-killed

	Makes IDEReporter to also report killed mutations (disabled by default)

	--debug

	Enables Debug Mode: more logs are printed

	--strict

	Enables Strict Mode: all warning messages are treated as fatal errors

	--no-test-output

	Does not capture output from test runs

	--no-mutant-output

	Does not capture output from mutant runs

	--no-output

	Combines -no-test-output and -no-mutant-output

	--disable-junk-detection

	Do not remove junk mutations

	--compdb-path filename

	Path to a compilation database (compile_commands.json) for junk detection

	--compilation-flags string

	Extra compilation flags for junk detection

	--linker string

	Linker program

	--linker-flags string

	Extra linker flags to produce final executable

	--linker-timeout number

	Timeout for the linking job (milliseconds)

	--coverage-info string

	Path to the coverage info file (LLVM’s profdata)

	--include-not-covered

	Include (but do not run) not covered mutants. Disabled by default

	--include-path regex

	File/directory paths to whitelist (supports regex)

	--exclude-path regex

	File/directory paths to ignore (supports regex)

	--mutators mutator

	Choose mutators:

	Groups:
	
	all

	cxx_all, experimental

	cxx_all

	cxx_assignment, cxx_increment, cxx_decrement, cxx_arithmetic, cxx_comparison, cxx_boundary, cxx_bitwise

	cxx_arithmetic

	cxx_minus_to_noop, cxx_add_to_sub, cxx_sub_to_add, cxx_mul_to_div, cxx_div_to_mul, cxx_rem_to_div

	cxx_arithmetic_assignment

	cxx_add_assign_to_sub_assign, cxx_sub_assign_to_add_assign, cxx_mul_assign_to_div_assign, cxx_div_assign_to_mul_assign, cxx_rem_assign_to_div_assign

	cxx_assignment

	cxx_bitwise_assignment, cxx_arithmetic_assignment, cxx_const_assignment

	cxx_bitwise

	cxx_bitwise_not_to_noop, cxx_and_to_or, cxx_or_to_and, cxx_xor_to_or, cxx_lshift_to_rshift, cxx_rshift_to_lshift

	cxx_bitwise_assignment

	cxx_and_assign_to_or_assign, cxx_or_assign_to_and_assign, cxx_xor_assign_to_or_assign, cxx_lshift_assign_to_rshift_assign, cxx_rshift_assign_to_lshift_assign

	cxx_boundary

	cxx_le_to_lt, cxx_lt_to_le, cxx_ge_to_gt, cxx_gt_to_ge

	cxx_comparison

	cxx_eq_to_ne, cxx_ne_to_eq, cxx_le_to_gt, cxx_lt_to_ge, cxx_ge_to_lt, cxx_gt_to_le

	cxx_const_assignment

	cxx_assign_const, cxx_init_const

	cxx_decrement

	cxx_pre_dec_to_pre_inc, cxx_post_dec_to_post_inc

	cxx_default

	cxx_increment, cxx_arithmetic, cxx_comparison, cxx_boundary

	cxx_increment

	cxx_pre_inc_to_pre_dec, cxx_post_inc_to_post_dec

	cxx_logical

	cxx_logical_and_to_or, cxx_logical_or_to_and, cxx_remove_negation

	experimental

	negate_mutator, remove_void_function_mutator, scalar_value_mutator, replace_call_mutator, cxx_logical

	Single mutators:
	
	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	remove_void_function_mutator

	Removes calls to a function returning void

	replace_call_mutator

	Replaces call to a function with 42

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

How Mull works

This page contains a short summary of the design and features of Mull. Also
the advantages of Mull are highlighted as well as some known issues.

If you want to learn more than we cover here, Mull has a paper:
“Mull it over: mutation testing based on LLVM” (see below on this page).

Design

Mull is based on LLVM and uses its API extensively. The main APIs used are:
LLVM IR and Clang AST API.

Mull finds and creates mutations of a program in memory, on the level of LLVM
bitcode.

All mutations are injected into original program’s code. Each injected mutation
is hidden under a conditional flag that enables that specific mutation. The
resulting program is compiled into a single binary which is run multiple times,
one run per mutation. With each run, Mull activates a condition for a
corresponding mutation to check how the injection of that particular mutation
affects the execution of a test suite.

Mull runs the tested program and its mutated versions in child subprocesses so
that the execution of the tested program does not affect Mull running in a
parent process.

Note: Mull no longer uses LLVM JIT for execution of mutated programs.
See the
Historical note: LLVM JIT deprecation (January 2021).

Mull uses information about source code obtained via Clang AST API to find out
which mutations in LLVM bitcode are valid (i.e. they trace back to the source
code), all invalid mutations are ignored in a controlled way.

Mutations search

The default search algorithm simply finds all mutations that can be found on the
level of LLVM bitcode.

The “black search” algorithm called Junk Detection uses source code information
provided by Clang AST to filter out invalid mutations from a set of all possible
mutations that are found in LLVM bitcode by the default search algorithm.

The “white search” algorithm starts with collecting source code information
via Clang AST and then feeds this information to the default search algorithm
which allows finding valid mutations and filtering out invalid mutations
at the same time.

The black and white search algorithms are very similar in the reasoning that
they do. The only difference is that the white search filters out invalid
mutations just in time as they are found in LLVM bitcode, while the black search
does this after the fact on the raw set of mutations that consists of both valid
and invalid mutations.

The black search algorithm appeared earlier and is expected to be more
stable. The white search algorithm is currently in development.

Supported mutation operators

See Supported Mutation Operators.

Reporting

Mull reports survived/killed mutations to the console by default. The
compiler-like warnings are printed to standard output.

Mull has an SQLite reporter: mutants and execution results are collected in
SQLite database. This kind of reporting makes it possible to make SQL queries
for a more advanced analysis of mutation results.

Mull supports reporting to HTML via
Mutation Testing Elements [https://github.com/stryker-mutator/mutation-testing-elements]. Mull generates JSON report which is given to Elements to generate HTML pages.

Platform support

Mull has a great support of macOS and various Linux systems across all modern
versions of LLVM from 3.9.0 to 9.0.0.

Mull supports FreeBSD with minor known issues.

Mull is reported to work on Windows Subsystem for Linux, but no official support
yet.

Test coverage

Mull has 3 layers of testing:

	Unit and integration testing on the level of C++ classes

	Integration testing against known real-world projects, such as OpenSSL

	Integration testing using LLVM Integrated Tester (LIT)

Advantages

The main advantage of Mull’s design and its approach to finding and doing
mutations is very good performance. Combined with incremental mutation testing
one can get mutation testing reports in the order of few seconds.

Another advantage is language agnosticism. The developers of Mull have been
focusing on C/C++ as the primary supported languages but the proof of concepts
for other compiled languages, such as Rust and Swift, have been developed.

A lot of development effort have been put into Mull in order to make it stable
across different operating systems and versions of LLVM. Combined with the
growing test coverage and highly modular design, Mull is a very stable,
well-tested and maintained system.

Known issue: Precision

Mull works on the level of LLVM bitcode and from there it gets its strengths
but also its main weakness: the precision of the information for mutations is
not as high as it is on the source code level. It is a broad area of work where
the developers of Mull have to combine the two levels of information about code:
LLVM bitcode and AST in order to make Mull both fast and precise. Among other
things the good suite of integration tests is aimed to provide Mull with a good
contract of supported mutations which are predictable and known to work without
any side effects.

Historical note: LLVM JIT deprecation (January 2021)

The usage of LLVM JIT has been deprecated and all LLVM JIT-related code has been
removed from Mull by January 2021.

This issue explains the reasons:
PSA: Moving away from JIT [https://github.com/mull-project/mull/issues/798].

Paper

Mull it over: mutation testing based on LLVM (preprint) [https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf]

@INPROCEEDINGS{8411727,
author={A. Denisov and S. Pankevich},
booktitle={2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)},
title={Mull It Over: Mutation Testing Based on LLVM},
year={2018},
volume={},
number={},
pages={25-31},
keywords={just-in-time;program compilers;program testing;program verification;mutations;Mull;LLVM IR;mutated programs;compiled programming languages;LLVM framework;LLVM JIT;tested program;mutation testing tool;Testing;Tools;Computer languages;Instruments;Runtime;Computer crashes;Open source software;mutation testing;llvm},
doi={10.1109/ICSTW.2018.00024},
ISSN={},
month={April},}

Additional information about Mull

	2019 EuroLLVM Developers’ Meeting: A. Denisov “Building an LLVM-based tool: lessons learned” [https://www.youtube.com/watch?v=Yvj4G9B6pcU] and blog post
Building an LLVM-based tool. Lessons learned [https://lowlevelbits.org/building-an-llvm-based-tool.-lessons-learned/]

	Mutation Testing: implementation details [https://lowlevelbits.org/mutation-testing-implementation-details/]

	Mutation testing for Swift with Mull: how it could work. Looking for contributors [https://stanislaw.github.io/2018/09/03/mull-and-swift-how-it-almost-works.html]

	Mull meets Rust (LLVM Social Berlin #6, 23.02.2017) [https://www.youtube.com/watch?v=VasSufnFswc&feature=youtu.be]

Hacking On Mull

Internals

Before you start hacking it may be helpful to get through the second and third sections of this paper:
Mull it over: mutation testing based on LLVM [https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf]
from ICST 2018 [https://www.es.mdh.se/icst2018/].

Development Setup using Vagrant

Mull supplies a number of ready to use virtual machines based on VirtualBox [http://virtualbox.org].

The machines are managed using Vagrant [https://www.vagrantup.com] and Ansible [https://www.ansible.com].

Do the following steps to setup a virtual machine:

cd infrastructure
vagrant up debian

This command will:

	setup a virtual machine

	install required packages (cmake, sqlite3, pkg-config, …)

	download precompiled version of LLVM

	build Mull against the LLVM

	run Mull’s test suite

	run Mull against OpenSSL and fmtlib as an integration test

Once the machine is up and running you can start hacking over SSH:

vagrant ssh debian

Within the virtual machine Mull’s sources located under /opt/mull.

Alternatively, you can setup a remote toolchain within your IDE, if it supports
it.

When you are done feel free to drop the virtual machine:

vagrant destroy debian

You can see the full list of supplied VMs by running this command:

vagrant status

Local Development Setup

You can replicate all the steps managed by Vagrant/Ansible manually.

Required packages

Please, look at the corresponding Ansible playbook (debian-playbook.yaml,
macos-playbook.yaml, etc.) for the list of packages required on your OS.

LLVM

You need LLVM to build and debug Mull.
You can use any LLVM version between 6.0 and 11.0.

There are several options:

	Download precompiled version of LLVM from the official website: http://releases.llvm.org/
This is a recommended option. Use it whenever possible. Simply download the
tarball and unpack it somewhere.

	Build LLVM from scratch on your own
This option also works. Use it whenever you cannot or do not want to use precompiled version.

	Ask Mull to build LLVM for you
This is recommended only if you need to debug some issue in Mull that
requires deep dive into the LLVM itself.

If you are going for an option 2 or 3 - make sure you also include Clang.

Build Mull

Create a build folder and initialize build system:

git clone https://github.com/mull-project/mull.git --recursive
cd mull
mkdir build.dir
cd build.dir
cmake -DPATH_TO_LLVM=path/to/llvm ..
make mull-cxx
make mull-tests

The PATH_TO_LLVM depends on which option you picked in previous section:

	Path to extracted tarball.

	Path to a build directory.

	Path to a source directory.

If you are getting linker errors, then it is very likely related to the C++
ABI. Depending on your OS/setup you may need to tweak the _GLIBCXX_USE_CXX11_ABI (0 or 1):

cmake -DPATH_TO_LLVM=some-path -DCMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 ..

If the linker error you get is something like undefined reference to `typeinfo for irm::CmpInstPredicateReplacement',
try to pass the -fno-rtti flag:

cmake -DPATH_TO_LLVM=some-path -DCMAKE_CXX_FLAGS=-fno-rtti ..

Index

	--workers number

	How many threads to use

	--timeout number

	Timeout per test run (milliseconds)

	--dry-run

	Skips real mutants execution. Disabled by default

	--report-name filename

	Filename for the report (only for supported reporters). Defaults to <timestamp>.<extension>

	--report-dir directory

	Where to store report (defaults to ‘.’)

	--enable-ast

	Enable “white” AST search (disabled by default)

	--reporters reporter

	Choose reporters:

	IDE

	Prints compiler-like warnings into stdout

	SQLite

	Saves results into an SQLite database

	Elements

	Generates mutation-testing-elements compatible JSON file

	--ide-reporter-show-killed

	Makes IDEReporter to also report killed mutations (disabled by default)

	--debug

	Enables Debug Mode: more logs are printed

	--strict

	Enables Strict Mode: all warning messages are treated as fatal errors

	--no-test-output

	Does not capture output from test runs

	--no-mutant-output

	Does not capture output from mutant runs

	--no-output

	Combines -no-test-output and -no-mutant-output

	--disable-junk-detection

	Do not remove junk mutations

	--compdb-path filename

	Path to a compilation database (compile_commands.json) for junk detection

	--compilation-flags string

	Extra compilation flags for junk detection

	--linker string

	Linker program

	--linker-flags string

	Extra linker flags to produce final executable

	--linker-timeout number

	Timeout for the linking job (milliseconds)

	--coverage-info string

	Path to the coverage info file (LLVM’s profdata)

	--include-not-covered

	Include (but do not run) not covered mutants. Disabled by default

	--include-path regex

	File/directory paths to whitelist (supports regex)

	--exclude-path regex

	File/directory paths to ignore (supports regex)

	--mutators mutator

	Choose mutators:

	Groups:
	
	all

	cxx_all, experimental

	cxx_all

	cxx_assignment, cxx_increment, cxx_decrement, cxx_arithmetic, cxx_comparison, cxx_boundary, cxx_bitwise

	cxx_arithmetic

	cxx_minus_to_noop, cxx_add_to_sub, cxx_sub_to_add, cxx_mul_to_div, cxx_div_to_mul, cxx_rem_to_div

	cxx_arithmetic_assignment

	cxx_add_assign_to_sub_assign, cxx_sub_assign_to_add_assign, cxx_mul_assign_to_div_assign, cxx_div_assign_to_mul_assign, cxx_rem_assign_to_div_assign

	cxx_assignment

	cxx_bitwise_assignment, cxx_arithmetic_assignment, cxx_const_assignment

	cxx_bitwise

	cxx_bitwise_not_to_noop, cxx_and_to_or, cxx_or_to_and, cxx_xor_to_or, cxx_lshift_to_rshift, cxx_rshift_to_lshift

	cxx_bitwise_assignment

	cxx_and_assign_to_or_assign, cxx_or_assign_to_and_assign, cxx_xor_assign_to_or_assign, cxx_lshift_assign_to_rshift_assign, cxx_rshift_assign_to_lshift_assign

	cxx_boundary

	cxx_le_to_lt, cxx_lt_to_le, cxx_ge_to_gt, cxx_gt_to_ge

	cxx_comparison

	cxx_eq_to_ne, cxx_ne_to_eq, cxx_le_to_gt, cxx_lt_to_ge, cxx_ge_to_lt, cxx_gt_to_le

	cxx_const_assignment

	cxx_assign_const, cxx_init_const

	cxx_decrement

	cxx_pre_dec_to_pre_inc, cxx_post_dec_to_post_inc

	cxx_default

	cxx_increment, cxx_arithmetic, cxx_comparison, cxx_boundary

	cxx_increment

	cxx_pre_inc_to_pre_dec, cxx_post_inc_to_post_dec

	cxx_logical

	cxx_logical_and_to_or, cxx_logical_or_to_and, cxx_remove_negation

	experimental

	negate_mutator, remove_void_function_mutator, scalar_value_mutator, replace_call_mutator, cxx_logical

	Single mutators:
	
	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	remove_void_function_mutator

	Removes calls to a function returning void

	replace_call_mutator

	Replaces call to a function with 42

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

	Operator Name

	Operator Semantics

	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	remove_void_function_mutator

	Removes calls to a function returning void

	replace_call_mutator

	Replaces call to a function with 42

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mull’s documentation!

 		
 Getting Started

 		
 Features

 		
 Introduction to Mutation Testing

 		
 Installation

 		
 Install on Ubuntu

 		
 Install on macOS

 		
 Tutorials

 		
 Hello World Example

 		
 Step 1: Checking version

 		
 Step 2: Enabling Bitcode

 		
 Step 3: Killing mutants, one survived

 		
 Step 4: Killing mutants again, all killed

 		
 Summary

 		
 Compilation Database and Junk Mutations

 		
 Junk Mutations

 		
 Keeping mutants under control

 		
 Mutation Operators

 		
 Filters

 		
 Code Coverage

 		
 Working with SQLite report

 		
 Database Schema

 		
 Running Queries

 		
 Supported Mutation Operators

 		
 Command Line Reference

 		
 How Mull works

 		
 Design

 		
 Mutations search

 		
 Supported mutation operators

 		
 Reporting

 		
 Platform support

 		
 Test coverage

 		
 Advantages

 		
 Known issue: Precision

 		
 Historical note: LLVM JIT deprecation (January 2021)

 		
 Paper

 		
 Additional information about Mull

 		
 Hacking On Mull

 		
 Internals

 		
 Development Setup using Vagrant

 		
 Local Development Setup

 		
 Required packages

 		
 LLVM

 		
 Build Mull

_static/plus.png

