
Mull
Release 0.15.1

Alex Denisov <alex@lowlevelbits.org>, Stanislav Pankevich <s.pankevich@gmail.com>

Jan 31, 2022

CONTENTS

1 Getting Started 1

2 Features 3

3 Introduction to Mutation Testing 5

4 Installation 7
4.1 Install on Ubuntu . 7
4.2 Install on macOS . 8

5 Tutorials 9
5.1 Hello World Example . 9
5.2 Compilation Database and Junk Mutations . 13
5.3 Keeping mutants under control . 20
5.4 Non-standard test suites . 23
5.5 Working with SQLite report . 26

6 Supported Mutation Operators 33

7 Incremental mutation testing 35
7.1 Typical use cases . 35

8 Command Line Reference 37
8.1 mull-cxx . 37
8.2 mull-runner . 40

9 Configuring Mull 43

10 How Mull works 45
10.1 Design . 45
10.2 Mutations search . 45
10.3 Supported mutation operators . 46
10.4 Reporting . 46
10.5 Platform support . 46
10.6 Test coverage . 46
10.7 Advantages . 46
10.8 Known issue: Precision . 47
10.9 Historical note: LLVM JIT deprecation (January 2021) . 47
10.10 Paper . 47
10.11 Additional information about Mull . 47

i

11 Hacking On Mull 49
11.1 Internals . 49
11.2 Development Setup using Vagrant . 49
11.3 Local Development Setup . 50

ii

CHAPTER

ONE

GETTING STARTED

Hello there, we are glad to have you here!

If you are new to the subject, then we recommend you start with the little Introduction into Mutation Testing. Then,
install Mull and go through the tutorials.

As soon as you are comfortable with the basics you may want to learn about various options and settings Mull has, as
well as pick the right set of available mutation operators.

If you are curious about how Mull works under the hood: How Mull works.

If you want to dive deeper and look behind the curtains, then we encourage you to hack on Mull.

If you have any questions feel free to open an issue or join the great community of researchers and practitioners on
Discord.

1

MutationTestingIntro.html
Installation.html
Tutorials.html
CommandLineReference.html
SupportedMutations.html
HowMullWorks.html
HackingOnMull.html
https://github.com/mull-project/mull/issues/new
https://discord.gg/Hphp7dW

Mull, Release 0.15.1

2 Chapter 1. Getting Started

CHAPTER

TWO

FEATURES

• Mull enables mutation testing of C and C++ projects.

• Mull expects a passing test suite to exit with 0. If the test suite fails, it must exit with a non-zero exit code. Any
C/C++ test framework that follows this convention is supported by Mull.

• Supported Mutations.

• Generate results in various formats:

– IDE Reporter: compiler-like warnings are printed to standard output

∗ sample.cpp:15:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]

– SQLite Reporter: SQLite database file.

– JSON file that conforms mutation-testing-elements schema

– Mutation Testing Elements HTML Reporter

• Parallelized execution of tests

• Incremental mutation testing. Working with mutations found in Git Diff changesets.

• Mull requires test programs to be compiled with Clang/LLVM. Mull supports all LLVM versions starting from
LLVM 6.

For a more detailed description of Mull’s architecture, see How Mull works.

3

SupportedMutations.html
https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema
https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/elements
IncrementalMutationTesting.html
HowMullWorks.html

Mull, Release 0.15.1

4 Chapter 2. Features

CHAPTER

THREE

INTRODUCTION TO MUTATION TESTING

Mutation Testing is a fault-based software testing technique. It evaluates the quality of a test suite by calculating
mutation score and showing gaps in semantic coverage. It does so by creating several slightly modified versions of the
original program, mutants, and running the test suite against each of them. A mutant is considered to be killed if the
test suite detects the change, or survived otherwise. A mutant is killed if at least one of the tests starts failing.

Each mutation of original program is based on a set of mutation operators (or mutators). A mutator is a predefined rule
that either changes or removes an existing statement or expression in the original program. Each rule is deterministic:
the same set of mutation operators applied to the same program results in the same set of mutants.

Mutation score is a ratio of killed vs total mutants. E.g., if seven out of ten mutants are killed, then the score is 0.7, or
70%. The higher the score the better.

5

Mull, Release 0.15.1

6 Chapter 3. Introduction to Mutation Testing

CHAPTER

FOUR

INSTALLATION

Mull comes with a number of precompiled binaries for macOS and Ubuntu. There are two flavors of packages:

• stable - tagged releases (0.8.0, 0.9.0, etc.)

• nightly - built for each PR

Alternatively, you can find packages on Github.

Please, refer to the Hacking on Mull to build Mull from sources.

4.1 Install on Ubuntu

Mull supports Ubuntu 18.04 and 20.04.

Setup apt-repository:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-stable/setup.deb.sh' |␣
→˓sudo -E bash

Note: Mull uses Cloudsmith for package distribution. The above script detects your OS and sets up the apt repo
automagically.

Install the package:

sudo apt-get update
sudo apt-get install mull-10 # Ubuntu 18.04
sudo apt-get install mull-12 # Ubuntu 20.04

Check if everything works:

$ mull-runner-10 --version
Mull: Practical mutation testing for C and C++
Home: https://github.com/mull-project/mull
Docs: https://mull.readthedocs.io
Version: 0.15.0
Commit: ab159cd
Date: 20 Jan 2022
LLVM: 10.0.0

You can also get the latest “nightly” build using the corresponding source:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-nightly/setup.deb.sh' |␣
→˓sudo -E bash

7

https://cloudsmith.io/~mull-project/repos/mull-stable/packages/
https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/
https://github.com/mull-project/mull/releases
HackingOnMull.html
https://cloudsmith.io

Mull, Release 0.15.1

Links:

• Mull Stable

• Mull Nightly

4.2 Install on macOS

Download the latest version from Github Releases.

Check the installation:

$ mull-runner-13 --version
Mull: Practical mutation testing for C and C++
Home: https://github.com/mull-project/mull
Docs: https://mull.readthedocs.io
Version: 0.15.0
Commit: 0252a4cf
Date: 28 Jan 2022
LLVM: 13.0.0

You can also get the latest “nightly” build from here.

8 Chapter 4. Installation

https://cloudsmith.io/~mull-project/repos/mull-stable/packages/
https://cloudsmith.io/~mull-project/repos/mull-stable/packages/
https://github.com/mull-project/mull/releases/latest
https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/

CHAPTER

FIVE

TUTORIALS

5.1 Hello World Example

Note: Since the version 0.15.0, mull-cxx tool is deprecated in favour of a compiler plugin: Mull IR Frontend.

If you are looking for mull-cxx tutorial, refer to this page instead.

Note: We would love to hear from you!

Please, report any issues on GitHub, or bring your questions to the #mull channel on Discord.

The goal of this tutorial is to demonstrate how to run Mull on minimal C programs. After reading it you should have a
basic understanding of what arguments Mull needs in order to create mutations in your programs, run the mutants and
generate mutation testing reports.

TL;DR version: if you want to run a single copy and paste example, scroll down to Killing mutants again, all
killed below.

Note: Clang 9 or newer is required!

5.1.1 Step 1: Checking version

Mull comes in a form of a compiler plugin and therefore tied to specific versions of Clang and LLVM. As a consequence
of that, tools and plugins have a suffix with the actual Clang/LLVM version.

This tutorial assumes that you are using Clang 12 and that you have installed Mull on your system and have the
mull-runner-12 executable available:

$ mull-runner-12 -version
Mull: LLVM-based mutation testing
https://github.com/mull-project/mull
Version: 0.15.0
Commit: a4be349e
Date: 18 Jan 2022
LLVM: 12.0.1

9

https://github.com/mull-project/mull/issues/945
https://github.com/mull-project/mull/pull/938
https://mull.readthedocs.io/en/0.14.0/tutorials/HelloWorld.html
https://github.com/mull-project/mull/issues
https://discord.gg/Hphp7dW

Mull, Release 0.15.1

5.1.2 Step 2: Enabling compiler plugin

Let’s create a C++ program:

int main() {
return 0;

}

and compile it:

$ clang-12 main.cpp -o hello-world

We can already try using mull-runner and see what happens:

$ mull-runner-12 ./hello-world
[info] Warm up run (threads: 1)

[################################] 1/1. Finished in 5ms
[info] Baseline run (threads: 1)

[################################] 1/1. Finished in 4ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 10ms

Notice the No mutants found message! Now, Mull is ready to work with the executable but there are no mutants:
we haven’t compiled the program with the compiler plugin that embeds mutants into our executable.

Let’s fix that! To pass the plugin to Clang, you need to add a few compiler flags.

Note: For Clang 9, 10, and 11 also pass -O1, otherwise the plugin won’t be called.

Note: -grecord-command-line doesn’t currently work if you compile several files in one go, e.g. clang a.c b.c
c.c. In this case, please remove the flag.

$ clang-12 -fexperimental-new-pass-manager \
-fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
-g -grecord-command-line \
main.cpp -o hello-world

[warning] Mull cannot find config (mull.yml). Using some defaults.

Notice the warning: Mull needs a config. However, in this tutorial we can ignore the warning and rely on the defaults.

You can learn more about the config here.

Let’s run mull-runner again:

$ mull-runner-12 ./hello-world
[info] Warm up run (threads: 1)

[################################] 1/1. Finished in 4ms
[info] Baseline run (threads: 1)

[################################] 1/1. Finished in 6ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 12ms

Still no mutants, but this time it is because we don’t have any code Mull can mutate.

10 Chapter 5. Tutorials

Mull, Release 0.15.1

5.1.3 Step 3: Killing mutants, one survived

Let’s add some code:

bool valid_age(int age) {
if (age >= 21) {
return true;

}
return false;

}

int main() {
bool test1 = valid_age(25) == true;
if (!test1) {
/// test failed
return 1;

}

bool test2 = valid_age(20) == false;
if (!test2) {
/// test failed
return 1;

}

/// success
return 0;

}

We re-compile this new code using the plugin and run the Mull again. This time we also want to add an additional flag
-ide-reporter-show-killed which tells Mull to print killed mutations. Normally we are not interested in seeing
killed mutants in console output but in this tutorial we want to be more verbose.

$ clang-12 -fexperimental-new-pass-manager \
-fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
-g -grecord-command-line \
main.cpp -o hello-world

$ mull-runner-12 -ide-reporter-show-killed hello-world
[info] Warm up run (threads: 1)

[################################] 1/1. Finished in 151ms
[info] Baseline run (threads: 1)

[################################] 1/1. Finished in 3ms
[info] Running mutants (threads: 4)

[################################] 4/4. Finished in 10ms
[info] Killed mutants (3/4):
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
if (age >= 21) {

^
/tmp/sc-tTV8a84lL/main.cpp:9:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
bool test1 = valid_age(25) == true;

^
/tmp/sc-tTV8a84lL/main.cpp:15:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
bool test2 = valid_age(20) == false;

^
[info] Survived mutants (1/4):

(continues on next page)

5.1. Hello World Example 11

Mull, Release 0.15.1

(continued from previous page)

/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Survived: Replaced >= with > [cxx_ge_to_gt]
if (age >= 21) {

^
[info] Mutation score: 75%
[info] Total execution time: 167ms

What we are seeing now is four mutations: three mutations are Killed, another one is Survived. If we take a closer
look at the code and the contents of the tests test1 and test2 we will see that one important test case is missing: the
one that would test the age 21 and this is exactly what the survived mutation is about: Mull has replaced age >= 21
with age > 21 and neither of the two tests have detected the mutation.

Let’s add the third test case and see what happens.

5.1.4 Step 4: Killing mutants again, all killed

The code:

bool valid_age(int age) {
if (age >= 21) {
return true;

}
return false;

}

int main() {
bool test1 = valid_age(25) == true;
if (!test1) {
/// test failed
return 1;

}

bool test2 = valid_age(20) == false;
if (!test2) {
/// test failed
return 1;

}

bool test3 = valid_age(21) == true;
if (!test3) {
/// test failed
return 1;

}

/// success
return 0;

}

$ clang-12 -fexperimental-new-pass-manager \
-fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
-g -grecord-command-line \
main.cpp -o hello-world

(continues on next page)

12 Chapter 5. Tutorials

Mull, Release 0.15.1

(continued from previous page)

$ mull-runner-12 -ide-reporter-show-killed hello-world
[info] Warm up run (threads: 1)

[################################] 1/1. Finished in 469ms
[info] Baseline run (threads: 1)

[################################] 1/1. Finished in 4ms
[info] Running mutants (threads: 5)

[################################] 5/5. Finished in 12ms
[info] Killed mutants (5/5):
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with > [cxx_ge_to_gt]
if (age >= 21) {

^
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
if (age >= 21) {

^
/tmp/sc-tTV8a84lL/main.cpp:9:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
bool test1 = valid_age(25) == true;

^
/tmp/sc-tTV8a84lL/main.cpp:15:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
bool test2 = valid_age(20) == false;

^
/tmp/sc-tTV8a84lL/main.cpp:21:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
bool test3 = valid_age(21) == true;

^
[info] All mutations have been killed
[info] Mutation score: 100%
[info] Total execution time: 487ms

In this last run, we see that all mutants were killed since we covered with tests all cases around the <=.

5.1.5 Summary

As a summary, all you need to enable Mull is to add a few compiler flags to the build system and then run mull-runner
against the resulting executable. Just to recap:

$ clang-12 -fexperimental-new-pass-manager \
-fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
-g -grecord-command-line \
main.cpp -o hello-world

$ mull-runner-12 hello-world

5.2 Compilation Database and Junk Mutations

Warning: Since the version 0.15.0, mull-cxx tool is deprecated in favour of a compiler plugin: Mull IR Frontend.

This tutorial covers mull-cxx tool and will be removed in the future.

It is recommended that you use the new Mull IR Frontend.

This tutorial shows how to apply Mull on a real-world project and how to overcome typical issues you might face.

5.2. Compilation Database and Junk Mutations 13

https://github.com/mull-project/mull/issues/945
https://github.com/mull-project/mull/pull/938

Mull, Release 0.15.1

This tutorial uses fmtlib as an example.

Get sources and build fmtlib:

git clone https://github.com/fmtlib/fmt.git
cd fmt
mkdir build.dir
cd build.dir
cmake \

-DCMAKE_CXX_FLAGS="-fembed-bitcode -g -O0" \
-DCMAKE_BUILD_TYPE=Debug \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..

make core-test

Note: last tested against commit 018688da2a58ba25cdf173bd899734f755adb11a

Run Mull against the core-test:

mull-cxx -mutators=cxx_add_to_sub ./bin/core-test

Right now you should see a weird and long error message by the end of execution. Here is a snippet:

/// skipped
[info] Applying mutations (threads: 1)

[################################] 10/10. Finished in 11ms
[info] Compiling original code (threads: 4)

[################################] 4/4. Finished in 5671ms
[info] Link mutated program (threads: 1)
[error] Cannot link program
status: Failed
time: 20096ms
exit: -60
command: clang /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-b5963a.o /var/
→˓folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-62252e.o /var/folders/1s/
→˓hps840w156xfn_m__h2m17880000gp/T/mull-22ed08.o /var/folders/1s/hps840w156xfn_m__
→˓h2m17880000gp/T/mull-84dd4a.o -o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-
→˓84a88a.exe
stdout:
stderr: Undefined symbols for architecture x86_64:
"std::logic_error::what() const", referenced from:

vtable for assertion_failure in mull-b5963a.o
"std::runtime_error::what() const", referenced from:

vtable for testing::internal::GoogleTestFailureException in mull-22ed08.o
vtable for fmt::v7::format_error in mull-84dd4a.o
vtable for fmt::v7::system_error in mull-84dd4a.o

/// skipped

In order to do the job, Mull takes the executable, deconstructs it into a number of pieces, inserts mutations into those
pieces, and then constructs the executable again. In order to re-build the mutated program, Mull needs a linker. As a
safe default, it just uses clang which works in most of the cases. However, in this case we deal with C++ which needs
a corresponding C++ linker. Instead we should be using clang++, which will do the job just fine.

Note: on Linux you may have to specify clang-<version> or clang++-<version>, where <version> corresponds to the
version of clang installed

Try this:

14 Chapter 5. Tutorials

https://github.com/fmtlib/fmt

Mull, Release 0.15.1

mull-cxx --linker=clang++ -mutators=cxx_add_to_sub ./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
[################################] 1/1. Finished in 194ms

[info] Loading bitcode files (threads: 4)
[################################] 4/4. Finished in 484ms

[info] Sanity check run (threads: 1)
[################################] 1/1. Finished in 12ms

[info] Gathering functions under test (threads: 1)
[################################] 1/1. Finished in 5ms

[info] Applying function filter: no debug info (threads: 8)
[################################] 12812/12812. Finished in 26ms

[info] Applying function filter: file path (threads: 8)
[################################] 12418/12418. Finished in 68ms

[info] Instruction selection (threads: 8)
[################################] 12418/12418. Finished in 291ms

[info] Searching mutants across functions (threads: 8)
[################################] 12418/12418. Finished in 42ms

[info] Applying filter: no debug info (threads: 8)
[################################] 863/863. Finished in 1ms

[info] Applying filter: file path (threads: 8)
[################################] 863/863. Finished in 11ms

[info] Applying filter: junk (threads: 8)
/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc:39:10: fatal error: 'gtest.h' file not␣
→˓found
#include "gtest.h"

^~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc
Make sure that the flags provided to Mull are the same flags that are used for normal␣
→˓compilation.
/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc:8:10: fatal error: 'algorithm' file not found
#include <algorithm>

^~~~~~~~~~~
[--------------------------------] 1/863

[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc
Make sure that the flags provided to Mull are the same flags that are used for normal␣
→˓compilation.
/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"

^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal␣
→˓compilation.

[################################] 863/863. Finished in 160ms
[info] Prepare mutations (threads: 1)

[################################] 1/1. Finished in 0ms
[info] Cloning functions for mutation (threads: 4)

[################################] 4/4. Finished in 51ms
(continues on next page)

5.2. Compilation Database and Junk Mutations 15

Mull, Release 0.15.1

(continued from previous page)

[info] Removing original functions (threads: 4)
[################################] 4/4. Finished in 43ms

[info] Redirect mutated functions (threads: 4)
[################################] 4/4. Finished in 12ms

[info] Applying mutations (threads: 1)
[################################] 10/10. Finished in 10ms

[info] Compiling original code (threads: 4)
[################################] 4/4. Finished in 5623ms

[info] Link mutated program (threads: 1)
[################################] 1/1. Finished in 402ms

[info] Warm up run (threads: 1)
[################################] 1/1. Finished in 597ms

[info] Baseline run (threads: 1)
[################################] 1/1. Finished in 30ms

[info] Running mutants (threads: 8)
[################################] 10/10. Finished in 157ms

[info] Survived mutants (10/10):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:554:67: warning: Survived: Replaced + with␣
→˓- [cxx_add_to_sub]

static_cast<unsigned int>(kMaxRandomSeed)) +
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:566:30: warning: Survived: Replaced + with␣
→˓- [cxx_add_to_sub]
const int next_seed = seed + 1;

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:734:37: warning: Survived: Replaced + with␣
→˓- [cxx_add_to_sub]

const int last_in_range = begin + range_width - 1;
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

argv[j] = argv[j + 1];
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

argv[j] = argv[j + 1];
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:9763:53: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

const int actual_to_skip = stack_frames_to_skip + 1;
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

argv[j] = argv[j + 1];

(continues on next page)

16 Chapter 5. Tutorials

Mull, Release 0.15.1

(continued from previous page)

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

argv[j] = argv[j + 1];
^

[info] Mutation score: 0%
[info] Total execution time: 8252ms

Almost everything works fine, except of those weird warnings:

/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"

^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal␣
→˓compilation.

That is because of junk mutations.

5.2.1 Junk Mutations

Not every mutation found at Bitcode level can be represented at the source level. A mutation is called junk mutation if
it exists on the bitcode level, but cannot be achieved on the source code level. Mull filters them out by looking back at
the source code. It tries its best, but sometimes it cannot parse the file because it doesn’t have enough information. To
give all the information needed you should provide compilation database, or compilation flags, or both.

Please, note: Clang adds implicit header search paths, which must be added explicitly via -compilation-flags.
You can get them using the following commands, for C and C++ respectively:

> clang -x c -c /dev/null -v
... skipped
#include <...> search starts here:
/usr/local/include
/opt/llvm/10.0.0/lib/clang/10.0.0/include
/System/Library/Frameworks (framework directory)
/Library/Frameworks (framework directory)
End of search list.

> clang++ -x c++ -c /dev/null -v
#include <...> search starts here:
/opt/llvm/10.0.0/bin/../include/c++/v1
/usr/local/include
/opt/llvm/10.0.0/lib/clang/10.0.0/include
/System/Library/Frameworks (framework directory)
/Library/Frameworks (framework directory)
End of search list.

The paths on your machine might be different, but based on the output above you need the following include dirs:

/opt/llvm/10.0.0/include/c++/v1
/usr/local/include

(continues on next page)

5.2. Compilation Database and Junk Mutations 17

https://clang.llvm.org/docs/JSONCompilationDatabase.html

Mull, Release 0.15.1

(continued from previous page)

/opt/llvm/10.0.0/lib/clang/10.0.0/include
/usr/include

Here is how you can run Mull with junk detection enabled:

mull-cxx \
-linker=clang++ \
-mutators=cxx_add_to_sub \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/10.0.0/include/c++/v1 \
-isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \
./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
[################################] 1/1. Finished in 182ms

[info] Loading bitcode files (threads: 4)
[################################] 4/4. Finished in 409ms

[info] Sanity check run (threads: 1)
[################################] 1/1. Finished in 11ms

[info] Gathering functions under test (threads: 1)
[################################] 1/1. Finished in 5ms

[info] Applying function filter: no debug info (threads: 8)
[################################] 12812/12812. Finished in 22ms

[info] Applying function filter: file path (threads: 8)
[################################] 12418/12418. Finished in 71ms

[info] Instruction selection (threads: 8)
[################################] 12418/12418. Finished in 270ms

[info] Searching mutants across functions (threads: 8)
[################################] 12418/12418. Finished in 43ms

[info] Applying filter: no debug info (threads: 8)
[################################] 863/863. Finished in 12ms

[info] Applying filter: file path (threads: 8)
[################################] 863/863. Finished in 10ms

[info] Applying filter: junk (threads: 8)
[################################] 863/863. Finished in 4531ms

[info] Prepare mutations (threads: 1)
[################################] 1/1. Finished in 1ms

[info] Cloning functions for mutation (threads: 4)
[################################] 4/4. Finished in 439ms

[info] Removing original functions (threads: 4)
[################################] 4/4. Finished in 241ms

[info] Redirect mutated functions (threads: 4)
[################################] 4/4. Finished in 12ms

[info] Applying mutations (threads: 1)
[################################] 350/350. Finished in 11ms

[info] Compiling original code (threads: 4)
[################################] 4/4. Finished in 4570ms

(continues on next page)

18 Chapter 5. Tutorials

Mull, Release 0.15.1

(continued from previous page)

[info] Link mutated program (threads: 1)
[################################] 1/1. Finished in 292ms

[info] Warm up run (threads: 1)
[################################] 1/1. Finished in 614ms

[info] Baseline run (threads: 1)
[################################] 1/1. Finished in 30ms

[info] Running mutants (threads: 8)
[################################] 350/350. Finished in 4421ms

[info] Survived mutants (305/350):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
state_ = (1103515245U * state_ + 12345U) % kMaxRange;

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

} else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
^

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2924:63: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]);
^

/// skipped

/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1334:68: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }

^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1284:53: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

double_bigit result = bigits_[i] * wide_value + carry;
^

[info] Mutation score: 12%
[info] Total execution time: 16280ms

In the end, 305 out of 350 mutants survived. Why so? One of the reasons is because most of the mutants are unreachable
by the test suite. You can learn how to handle this issue in the next tutorial: Keeping mutants under control

5.2. Compilation Database and Junk Mutations 19

ControlMutationsTutorial.html

Mull, Release 0.15.1

5.3 Keeping mutants under control

Warning: Since the version 0.15.0, mull-cxx tool is deprecated in favour of a compiler plugin: Mull IR Frontend.

This tutorial covers mull-cxx tool and will be removed in the future.

It is recommended that you use the new Mull IR Frontend.

This tutorial shows you how to keep the number of mutants under control. It builds on top of the Compilation Database
and Junk Mutations tutorial so make sure you go through that one first.

When you apply mutation testing for the first time, you might be overwhelmed by the number of mutants - what do you
do when you see that several hundred or thousands of mutants survived?

The right way to go about it is to put the number of mutants under control and work through them incrementally.

5.3.1 Mutation Operators

If you apply Mull with the default set of mutation operators on fmtlib, you will get around ~4000 mutants, ~3300 of
which survive.

$ mull-cxx \
-linker=clang++ \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/10.0.0/include/c++/v1 \
-isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \

./bin/core-test

/// skipped

[info] Survived mutants (3397/3946):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/core.h:734:19: warning: Survived: Replaced <= with <␣
→˓[cxx_le_to_lt]

size_ = count <= capacity_ ? count : capacity_;
^

/tmp/sc-0Puh0WBoL/fmt/include/fmt/core.h:1716:12: warning: Survived: Replaced >= with >␣
→˓[cxx_ge_to_gt]
if (id >= detail::max_packed_args) return arg;

^
/// skipped

/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1283:51: warning: Survived: Replaced ++x␣
→˓with --x [cxx_pre_inc_to_pre_dec]
for (size_t i = 0, n = bigits_.size(); i < n; ++i) {

^
[info] Mutation score: 13%
[info] Total execution time: 89999ms

Going through all of them to see which ones deserve your attention is simply impractical.

20 Chapter 5. Tutorials

https://github.com/mull-project/mull/issues/945
https://github.com/mull-project/mull/pull/938
CompilationDatabaseAndJunk.html
CompilationDatabaseAndJunk.html

Mull, Release 0.15.1

The easiest way to decrease this number is to pick one or two mutation operators.

Let’s see how the numbers change if we only use cxx_add_to_sub that replaces all the a + b to a - b.

$ mull-cxx \
-linker=clang++ \
-mutators=cxx_add_to_sub \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/10.0.0/include/c++/v1 \
-isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \

./bin/core-test

/// skipped

[info] Survived mutants (305/350):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
state_ = (1103515245U * state_ + 12345U) % kMaxRange;

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;

^
/// skipped
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1334:68: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }

^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1284:53: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]

double_bigit result = bigits_[i] * wide_value + carry;
^

[info] Mutation score: 12%
[info] Total execution time: 18481ms

You are still getting plenty - 305 survived out of 350 total, but this is much more manageable.

5.3.2 Filters

You may notice that the last run had, among others, the following mutants survived:

/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
state_ = (1103515245U * state_ + 12345U) % kMaxRange;

^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;

^

Looking at the paths, it is clear that these mutants are part of the GoogleTest framework (gmock-gtest-all.cc).

5.3. Keeping mutants under control 21

Mull, Release 0.15.1

It is very unlikely that you are interested in seeing these in the result. Mull comes with two path-based filters
--exclude-path and --include-path. You can use these to either exclude or include mutations based on their
file-system location. Let’s exclude everything related to GoogleTest:

$ mull-cxx \
-linker=clang++ \
-mutators=cxx_add_to_sub \
-exclude-path=".*gtest.*" \
-exclude-path=".*gmock.*" \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/10.0.0/include/c++/v1 \
-isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \

./bin/core-test
/// skipped

[info] Survived mutants (275/320):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:228:35: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;

^

275/320 vs. 305/350. Better, but still too much.

5.3.3 Code Coverage

In fact, many of the survived mutants can never be detected by the test suite because they are not reachable by any of
the tests. We can leverage code coverage information to cut off all those mutants.

For that to work, we need to gather the coverage info first.

$ cmake \
-DCMAKE_CXX_FLAGS="-fembed-bitcode -g -O0 -fprofile-instr-generate -fcoverage-mapping

→˓" \
-DCMAKE_BUILD_TYPE=Debug \
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..

$ make core-test
$./bin/core-test

Running core-test with the coverage info enabled (-fprofile-instr-generate -fcoverage-mapping) gener-
ates raw coverage info in the current folder. Currently, Mull doesn’t work with raw info, so we need to post-process it
manually:

$ llvm-profdata merge default.profraw -o default.profdata

Now we can pass default.profdata to Mull. Another important detail, now we also need to tell Mull about additional
linker flags - otherwise, it won’t be able to reconstruct mutated executable. See the --linker-flags CLI option:

$ mull-cxx \
-linker=clang++ \
-linker-flags="-fprofile-instr-generate -fcoverage-mapping" \
-mutators=cxx_add_to_sub \

(continues on next page)

22 Chapter 5. Tutorials

Mull, Release 0.15.1

(continued from previous page)

-exclude-path=".*gtest.*" \
-exclude-path=".*gmock.*" \
-coverage-info=default.profdata \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/10.0.0/include/c++/v1 \
-isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \

./bin/core-test
/// skipped

[info] Survived mutants (14/27):
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:2129:37: warning: Survived: Replaced +␣
→˓with - [cxx_add_to_sub]
const int beta_minus_1 = exponent + floor_log2_pow10(-minus_k);

^
/// skipped
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format.h:1570:31: warning: Survived: Replaced + with -␣
→˓[cxx_add_to_sub]
auto it = reserve(out, size + padding * specs.fill.size());

^
[info] Mutation score: 48%
[info] Total execution time: 14124ms

Now, we’ve got only 27 mutants instead of 4000 in the beginning - something we can work with. It’s always a good
idea to start with the code coverage in the first place. In this case, even without filters and changing the set of mutation
operators, we can decrease the number of mutants to something much more actionable.

As an exercise, try to remove -exclude-path and -mutators options and see how many mutants you get.

(Spoiler alert: 563)

5.4 Non-standard test suites

Warning: Since the version 0.15.0, mull-cxx tool is deprecated in favour of a compiler plugin: Mull IR Frontend.

This tutorial covers mull-cxx tool and will be updated in the future.

The goal of this tutorial is to demonstrate how to use Mull with ‘non-standard’ test suites, such as when the test suite
is a separate program. The best example is integration tests written in interpreted languages.

5.4. Non-standard test suites 23

https://github.com/mull-project/mull/issues/945
https://github.com/mull-project/mull/pull/938

Mull, Release 0.15.1

5.4.1 Two-step analysis process

The typical process of applying Mull is a one-step action: run mull-cxx and wait for the results. Here is what mull-cxx
does under the hood:

1. Generates a mutated version of the original program

2. Runs all the mutants

3. Generates report(s)

Since version 0.11.0, there is a way to split this process into a two-step action: run mull-cxx to generate mutated
program, and then run mull-runner to assess all the mutants and generate reports.

Given the program from the Hello World Example the following two runs are identical:

One-step process:

$ clang -fembed-bitcode -g main.cpp -o hello-world
$ mull-cxx -ide-reporter-show-killed hello-world

Two-step process:

$ clang -fembed-bitcode -g main.cpp -o hello-world
$ mull-cxx -mutate-only -output=hello-world-mutated hello-world
$ mull-runner -ide-reporter-show-killed hello-world-mutated

While this is useful, let’s look into a slightly more complex example.

5.4.2 Tests in interpreted languages

Consider the following (absolutely synthetic) program under test:

extern int printf(const char *, ...);
extern int strcmp(const char *, const char *);

int test1(int a, int b) {
return a + b;

}

int test2(int a, int b) {
return a * b;

}

int main(int argc, char **argv) {
if (argc == 1) {

printf("NOT ENOUGH ARGUMENTS\n");
return 1;

}
if (strcmp(argv[1], "first test") == 0) {
if (test1(2, 5) == 7) {
printf("first test passed\n");
return 0;

} else {
printf("first test failed\n");
return 1;

(continues on next page)

24 Chapter 5. Tutorials

HelloWorld.html

Mull, Release 0.15.1

(continued from previous page)

}
} else if (strcmp(argv[1], "second test") == 0) {
if (test2(2, 5) == 10) {
printf("second test passed\n");
return 0;

} else {
printf("second test failed\n");
return 1;

}
} else {
printf("INCORRECT TEST NAME %s\n", argv[1]);
return 1;

}
return 0;

}

The program accepts a command-line argument, and depending on the value of the argument it either runs one of the
tests or exists with an error. Here is an example:

$ clang main.c -o test
$./test
NOT ENOUGH ARGUMENTS
$./test "first test"
first test passed
$./test "second test"
second test passed
$./test "third test"
INCORRECT TEST NAME third test

Running these tests manually is a tedious and error-prone process, so we create a separate test runner:

import sys
import subprocess

test_executable = sys.argv[1]

subprocess.run([test_executable, "first test"], check=True)
subprocess.run([test_executable, "second test"], check=True)

The script takes the program under test as its argument and runs the tests against that program.

$ clang main.c -o test
$ python3 test.py ./test
first test passed
second test passed

In this case, simply using mull-cxx is not enough: Mull doesn’t know how to run the “external” test suite (test.py), so
we must be using mull-runner for this. The process is two-step.

1. Generate mutated executable

$ clang -fembed-bitcode -g main.c -o test
$ mull-cxx -mutate-only \

(continues on next page)

5.4. Non-standard test suites 25

Mull, Release 0.15.1

(continued from previous page)

-mutators=cxx_add_to_sub -mutators=cxx_mul_to_div \
-output=test.mutated ./test

[info] Mutate-only mode on: Mull will generate mutants, but won't run them
...
[info] Mutated executable: test.mutated
[info] Total execution time: 182ms

2. Run analysis using mull-runner:

$ mull-runner test.mutated -ide-reporter-show-killed \
-test-program=python3 -- test.py test.mutated

[info] Warm up run (threads: 1)
[################################] 1/1. Finished in 398ms

[info] Baseline run (threads: 1)
[################################] 1/1. Finished in 60ms

[info] Running mutants (threads: 2)
[################################] 2/2. Finished in 76ms

[info] Killed mutants (2/2):
main.c:5:16: warning: Killed: Replaced + with - [cxx_add_to_sub]

return a + b;
^

main.c:9:16: warning: Killed: Replaced * with / [cxx_mul_to_div]
return a * b;

^
[info] All mutations have been killed
[info] Mutation score: 100%
[info] Total execution time: 535ms

Note, test.mutated appears twice in the arguments list: the first appearance is required for mull-runner to extract the
mutants generated at the first step. The second appearance is passed to the test program.

5.5 Working with SQLite report

Warning: The data model has changed and most of the tutorial is no longer relevant/applicable. This tutorial will
be updated in a next release.

From the very beginning, we didn’t want to impose our vision on treating the results of mutation testing. Some people
do not care about the mutation score, while others do care, but want to calculate it slightly differently.

To solve this problem, Mull splits execution and reporting into separate phases. What Mull does is apply mutation
testing on a program, collect as much information as possible, and then pass this information to one of several reporters.

At the moment of writing, there are three reporters:

• IDEReporter: prints mutants in the format of clang warnings

• MutationTestingElementsReporter: emits a JSON-file compatible with Mutation Testing Elements.

• SQLiteReporter: saves all the information to an SQLite database

One of the ways to do a custom analysis of mutation testing results is to run queries against the SQLite database. The
rest of this document describes how to work with Mull’s SQLite database.

26 Chapter 5. Tutorials

https://github.com/stryker-mutator/mutation-testing-elements

Mull, Release 0.15.1

5.5.1 Database Schema

The following picture describes part of the existing database:

Some fields and tables irrelevant for this document are omitted.

Let’s take a brief look at each table.

test

This table contains information about a particular test. A test, from Mull’s perspective, is just a function. For UI
reporting purposes, Mull records the location of the function.

mutation_point

This is one of the core elements of Mull. The mutation point describes what was changed and where. The mutator
field stores name of a mutation operator applied at this mutation point. The rest of the fields describe the physical
location of the mutation.

execution_result

Execution results are stored separately from mutation points for the following reasons:

• a mutation point might be reachable by more than one test. Therefore Mull runs several tests against one mutation
point

• to gather code coverage information Mull runs all the tests one by one without any mutations involved

In other words, execution_result describes many-to-many relation between tests and mutations.

Empty mutation_point_id indicates that a test was run to gather code coverage information.

The status field stores a numerical value as described in the following table:

Numeric value String Value Description
1 Failed test has failed (the exit code does not equal 0)
2 Passed test has passed (the exit code equals 0)
3 Timedout test execution took more time than expected
4 Crashed test program was terminated
5 AbnormalExit test program exited (some test frameworks call exit(1) when test fails)
6 DryRun test was not run (DryRun mode enabled)
7 FailFast mutant was killed by another test so this test run can be skipped

5.5. Working with SQLite report 27

SupportedMutations.html

Mull, Release 0.15.1

5.5.2 Running Queries

The benefit of having results in an SQLite database is that we can run as many queries as we want and to examine the
results without re-running Mull, which can be a long-running task.

If you don’t have a sample project ready, then it is a good idea to check out the fmtlib tutorial.

To enable SQLite reporter, add -reporters=SQLite to the CLI options. It is also recommended to specify the report
name via -report-name, e.g.:

mull-cxx -mutators=cxx_add_to_sub \
-compdb-path compile_commands.json \
-compilation-flags="\
-isystem /opt/llvm/5.0.0/include/c++/v1 \
-isystem /opt/llvm/5.0.0/lib/clang/5.0.0/include \
-isystem /usr/include \
-isystem /usr/local/include" \

-reporters=SQLite \
-report-name=tutorial \
./bin/core-test

In the end, you should see something like this:

[info] Results can be found at './tutorial.sqlite'

Open the database and enable better formatting (optional):

sqlite3 ./tutorial.sqlite
sqlite> .header on
sqlite> .mode column

Now you can examine contents of the database:

sqlite> .tables
config mutation_point mutation_result
execution_result mutation_point_debug test

sqlite> .schema execution_result
CREATE TABLE execution_result (
test_id TEXT,
mutation_point_id TEXT,
status INT,
duration INT,
stdout TEXT,
stderr TEXT

);

As you can see, the schema for execution_result matches the one on the picture above.

28 Chapter 5. Tutorials

fmtlibTutorial.html

Mull, Release 0.15.1

Basic exploration

Let’s check how many mutants:

sqlite> select count(*) from mutation_point;
count(*)

35

Let’s see some stats on the execution time:

sqlite> select avg(duration), max(duration) from execution_result;
avg(duration) max(duration)
---------------- -------------
5.23497267759563 76

Let’s see what’s wrong with that slow test run:

Note: Here, I use several queries to save some screen space. Locally you may combine this into one query just fine.

sqlite> select rowid, status, duration from execution_result order by duration desc␣
→˓limit 5;
rowid status duration
---------- ---------- ----------
73 3 76
54 1 22
55 1 19
179 1 17
5 2 14
sqlite> select test_id from execution_result where rowid = 73;
test_id

FormatDynArgsTest.Basic
sqlite> select mutation_point_id from execution_result where rowid = 73;
mutation_point_id

3539da16613cf5da12032f308b293b8f_3539da16613cf5da12032f308b293b8f_478_2_15_cxx_add_to_sub

Now, we now the exact test case and exact mutation we can identify their locations in the source code:

sqlite> select * from test where unique_id = "BufferTest.Access";
test_name unique_id location_file location_
→˓line
----------------- ----------------- --------------------------------------- ----------
→˓---
BufferTest.Access BufferTest.Access /tmp/sc-UiYEtcmuH/fmt/test/core-test.cc 144

sqlite> select mutator, filename, line_number, column_number from mutation_point
where unique_id = "3539da16613cf5da12032f308b293b8f_3539da16613cf5da12032f308b293b8f_

→˓478_2_15_cxx_add_to_sub";
mutator filename line_number column_number
-------------- -- ----------- -------------
cxx_add_to_sub /tmp/sc-UiYEtcmuH/fmt/include/fmt/format.h 1746 45

5.5. Working with SQLite report 29

Mull, Release 0.15.1

Deeper dive

Exploration via SQLite is cool, but let’s do some math and calculate the mutation score using SQL.

To calculate mutation score, we will use the following formula: # of killed mutants / # of all mutants,
where killed means that the status of an execution_result is anything but Passed.

Counting all the killed mutants is not the most straightforward query, but should still be bearable: select all the mutation
points and then narrow down the results by selecting the ones where the execution status does not equal 2 (Passed).

sqlite> select mutation_point.unique_id as mutation_point_id from mutation_point
inner join execution_result on execution_result.mutation_point_id = mutation_point.

→˓unique_id
where execution_result.status <> 2
group by mutation_point_id;

Reusing this query is a bit of a hassle, so it makes sense to create an SQL View which can be used as a normal table:

sqlite> create view killed_mutants as
select mutation_point.unique_id as mutation_point_id from mutation_point
inner join execution_result on execution_result.mutation_point_id = mutation_point.

→˓unique_id
where execution_result.status <> 2
group by mutation_point_id;

sqlite> select count(*) from killed_mutants;
count(*)

16

With the number of killed mutants in place we can calculate the mutation score:

sqlite> select round(
(select count(*) from killed_mutants) * 1.0 /
(select count(*) from mutation_point) * 100) as score;

score

46.0

Gotchas

One important thing to remember: by default Mull also stores stderr and stdout of each test run, which can blow
up the size of the database by tens on gigabytes.

If you don’t need the stdout/stderr, then it is recommended to disable it via one of the following options
--no-output, --no-test-output, --no-mutant-output.

Alternatively, you can strip this information from the database using this query:

begin transaction;
create temporary table t1_backup as select test_id, mutation_point_id, status, duration␣
→˓FROM execution_result;
drop table execution_result;
create table execution_result as select * FROM t1_backup;
drop table t1_backup;

(continues on next page)

30 Chapter 5. Tutorials

Mull, Release 0.15.1

(continued from previous page)

commit;
vacuum;

5.5. Working with SQLite report 31

Mull, Release 0.15.1

32 Chapter 5. Tutorials

CHAPTER

SIX

SUPPORTED MUTATION OPERATORS

Operator Name Operator Semantics
cxx_add_assign_to_sub_assign Replaces += with -=
cxx_add_to_sub Replaces + with -
cxx_and_assign_to_or_assign Replaces &= with |=
cxx_and_to_or Replaces & with |
cxx_assign_const Replaces ‘a = b’ with ‘a = 42’
cxx_bitwise_not_to_noop Replaces ~x with x
cxx_div_assign_to_mul_assign Replaces /= with *=
cxx_div_to_mul Replaces / with *
cxx_eq_to_ne Replaces == with !=
cxx_ge_to_gt Replaces >= with >
cxx_ge_to_lt Replaces >= with <
cxx_gt_to_ge Replaces > with >=
cxx_gt_to_le Replaces > with <=
cxx_init_const Replaces ‘T a = b’ with ‘T a = 42’
cxx_le_to_gt Replaces <= with >
cxx_le_to_lt Replaces <= with <
cxx_logical_and_to_or Replaces && with ||
cxx_logical_or_to_and Replaces || with &&
cxx_lshift_assign_to_rshift_assign Replaces <<= with >>=
cxx_lshift_to_rshift Replaces << with >>
cxx_lt_to_ge Replaces < with >=
cxx_lt_to_le Replaces < with <=
cxx_minus_to_noop Replaces -x with x
cxx_mul_assign_to_div_assign Replaces *= with /=
cxx_mul_to_div Replaces * with /
cxx_ne_to_eq Replaces != with ==
cxx_or_assign_to_and_assign Replaces |= with &=
cxx_or_to_and Replaces | with &
cxx_post_dec_to_post_inc Replaces x– with x++
cxx_post_inc_to_post_dec Replaces x++ with x–
cxx_pre_dec_to_pre_inc Replaces –x with ++x
cxx_pre_inc_to_pre_dec Replaces ++x with –x
cxx_rem_assign_to_div_assign Replaces %= with /=
cxx_rem_to_div Replaces % with /
cxx_remove_negation Replaces !a with a
cxx_remove_void_call Removes calls to a function returning void
cxx_replace_scalar_call Replaces call to a function with 42

continues on next page

33

Mull, Release 0.15.1

Table 1 – continued from previous page
Operator Name Operator Semantics
cxx_rshift_assign_to_lshift_assign Replaces >>= with <<=
cxx_rshift_to_lshift Replaces << with >>
cxx_sub_assign_to_add_assign Replaces -= with +=
cxx_sub_to_add Replaces - with +
cxx_xor_assign_to_or_assign Replaces ^= with |=
cxx_xor_to_or Replaces ^ with |
negate_mutator Negates conditionals !x to x and x to !x
scalar_value_mutator Replaces zeros with 42, and non-zeros with 0

34 Chapter 6. Supported Mutation Operators

CHAPTER

SEVEN

INCREMENTAL MUTATION TESTING

Normally, Mull looks for mutations in all files of a project. Depending on a project’s size, a number of mutations can
be very large, so running Mull against all of them might be a rather slow process. Speed aside, an analysis of a large
mutation data sets can be very time consuming work to be done by a user.

Incremental mutation testing is a feature that enables running Mull only on the mutations found in Git Diff changesets.
Instead of analysing all files and functions, Mull only finds mutations in the source lines that are covered by a particular
Git Diff changeset.

Example: if a Git diff is created from a project’s Git tree and the diff is only one line, Mull will only find mutations in
that line and will skip everything else.

To enable incremental mutation testing, two arguments have to be provided to Mull: -git-diff-ref=<branch or
commit> and -git-project-root=<path> which is a path to a project’s Git root path.

An additional debug option -debug can be useful for a visualization of how exactly Mull whitelists or blacklists found
source lines.

Note: Incremental mutation testing is an experimental feature. Things might go wrong. If you encounter any issues,
please report them on the mull/issues tracker.

7.1 Typical use cases

Under the hood, Mull runs git diff from a project’s root folder. There are at least three reasonable options for using
the -git-diff-ref argument:

1. -git-diff-ref=origin/main

Mull is run from a branch with a few commits against a main branch such as main, master or equivalent. This
is what you get from your branch when you simply do git diff origin/master. This way you can also test
your branch if you have Mull running as part of your CI workflow.

2. -git-diff-ref=. (unstaged), -git-diff-ref=HEAD (unstaged + staged)

Mull is run against a diff between the “unclean” tree state and your last commit. This use case is useful when
you want to check your work-in-progress code with Mull before committing your changes.

3. -git-diff-ref=COMMIT^!

Mull is run against a diff of a specific commit (see also How can I see the changes in a Git commit?). This option
should be used with caution because Mull does not perform a git checkout to switch to a given commit’s state.
Mull always stands on top of the existing tree, so if a provided commit has already been overridden by more recent
commits, Mull will not produce the results for that earlier commit which can result in a misleading information
in the mutation reports. Use this option only if you are sure that no newer commits in your Git tree have touched
the file(s) you are interested in.

35

https://github.com/mull-project/mull/issues
https://stackoverflow.com/questions/17563726/how-can-i-see-the-changes-in-a-git-commit

Mull, Release 0.15.1

36 Chapter 7. Incremental mutation testing

CHAPTER

EIGHT

COMMAND LINE REFERENCE

8.1 mull-cxx

Warning: Since the version 0.15.0, mull-cxx tool is deprecated in favour of a compiler plugin: Mull IR Frontend.

--output path output file

--workers number How many threads to use

--timeout number Timeout per test run (milliseconds)

--dry-run Skips mutant execution and generation. Disabled by default

--mutate-only Skips mutant execution. Unlike -dry-run generates mutants. Disabled by default

--lower-bitcode Lower bitcode into machine code for linking. Disabled by default

--report-name filename Filename for the report (only for supported reporters). Defaults to <times-
tamp>.<extension>

--report-dir directory Where to store report (defaults to ‘.’)

--report-patch-base directory Create Patches relative to this directory (defaults to git-project-root if
available, else absolute path will be used)

--reporters reporter Choose reporters:

IDE Prints compiler-like warnings into stdout

SQLite Saves results into an SQLite database

Elements Generates mutation-testing-elements compatible JSON file

Patches Generates patch file for each mutation

GithubAnnotations Print GithubAnnotations for mutants

--ide-reporter-show-killed Makes IDEReporter to also report killed mutations (disabled by default)

--debug Enables Debug Mode: more logs are printed

--strict Enables Strict Mode: all warning messages are treated as fatal errors

--keep-object-files Keep temporary object files

--keep-executable Keep temporary executable file

--no-test-output Does not capture output from test runs

--no-mutant-output Does not capture output from mutant runs

37

https://github.com/mull-project/mull/issues/945
https://github.com/mull-project/mull/pull/938

Mull, Release 0.15.1

--no-output Combines -no-test-output and -no-mutant-output

--disable-junk-detection Do not remove junk mutations

--compdb-path filename Path to a compilation database (compile_commands.json) for junk detection

--compilation-flags string Extra compilation flags for junk detection

--linker string Linker program

--linker-flags string Extra linker flags to produce final executable

--linker-timeout number Timeout for the linking job (milliseconds)

--coverage-info string Path to the coverage info file (LLVM’s profdata)

--include-not-covered Include (but do not run) not covered mutants. Disabled by default

--include-path regex File/directory paths to whitelist (supports regex, equivalent to “grep -E”)

--exclude-path regex File/directory paths to ignore (supports regex, equivalent to “grep -E”)

--git-diff-ref ref Git branch, commit, or tag to run diff against (enables incremental testing)

--git-project-root path Path to project’s Git root (used together with -git-diff-ref)

--mutators mutator Choose mutators:

Groups:

all cxx_all, experimental

cxx_all cxx_assignment, cxx_increment, cxx_decrement,
cxx_arithmetic, cxx_comparison, cxx_boundary,
cxx_bitwise, cxx_calls

cxx_arithmetic cxx_minus_to_noop, cxx_add_to_sub,
cxx_sub_to_add, cxx_mul_to_div, cxx_div_to_mul,
cxx_rem_to_div

cxx_arithmetic_assignment cxx_add_assign_to_sub_assign,
cxx_sub_assign_to_add_assign,
cxx_mul_assign_to_div_assign,
cxx_div_assign_to_mul_assign,
cxx_rem_assign_to_div_assign

cxx_assignment cxx_bitwise_assignment,
cxx_arithmetic_assignment, cxx_const_assignment

cxx_bitwise cxx_bitwise_not_to_noop, cxx_and_to_or,
cxx_or_to_and, cxx_xor_to_or, cxx_lshift_to_rshift,
cxx_rshift_to_lshift

cxx_bitwise_assignment cxx_and_assign_to_or_assign,
cxx_or_assign_to_and_assign, cxx_xor_assign_to_or_assign,
cxx_lshift_assign_to_rshift_assign,
cxx_rshift_assign_to_lshift_assign

cxx_boundary cxx_le_to_lt, cxx_lt_to_le, cxx_ge_to_gt,
cxx_gt_to_ge

cxx_calls cxx_remove_void_call, cxx_replace_scalar_call

cxx_comparison cxx_eq_to_ne, cxx_ne_to_eq, cxx_le_to_gt,
cxx_lt_to_ge, cxx_ge_to_lt, cxx_gt_to_le

38 Chapter 8. Command Line Reference

Mull, Release 0.15.1

cxx_const_assignment cxx_assign_const, cxx_init_const

cxx_decrement cxx_pre_dec_to_pre_inc,
cxx_post_dec_to_post_inc

cxx_default cxx_increment, cxx_arithmetic, cxx_comparison,
cxx_boundary

cxx_increment cxx_pre_inc_to_pre_dec,
cxx_post_inc_to_post_dec

cxx_logical cxx_logical_and_to_or, cxx_logical_or_to_and,
cxx_remove_negation

experimental negate_mutator, scalar_value_mutator,
cxx_logical

Single mutators:

cxx_add_assign_to_sub_assign Replaces += with -=

cxx_add_to_sub Replaces + with -

cxx_and_assign_to_or_assign Replaces &= with |=

cxx_and_to_or Replaces & with |

cxx_assign_const Replaces ‘a = b’ with ‘a = 42’

cxx_bitwise_not_to_noop Replaces ~x with x

cxx_div_assign_to_mul_assign Replaces /= with *=

cxx_div_to_mul Replaces / with *

cxx_eq_to_ne Replaces == with !=

cxx_ge_to_gt Replaces >= with >

cxx_ge_to_lt Replaces >= with <

cxx_gt_to_ge Replaces > with >=

cxx_gt_to_le Replaces > with <=

cxx_init_const Replaces ‘T a = b’ with ‘T a = 42’

cxx_le_to_gt Replaces <= with >

cxx_le_to_lt Replaces <= with <

cxx_logical_and_to_or Replaces && with ||

cxx_logical_or_to_and Replaces || with &&

cxx_lshift_assign_to_rshift_assign Replaces <<= with >>=

cxx_lshift_to_rshift Replaces << with >>

cxx_lt_to_ge Replaces < with >=

cxx_lt_to_le Replaces < with <=

cxx_minus_to_noop Replaces -x with x

cxx_mul_assign_to_div_assign Replaces *= with /=

cxx_mul_to_div Replaces * with /

cxx_ne_to_eq Replaces != with ==

8.1. mull-cxx 39

Mull, Release 0.15.1

cxx_or_assign_to_and_assign Replaces |= with &=

cxx_or_to_and Replaces | with &

cxx_post_dec_to_post_inc Replaces x– with x++

cxx_post_inc_to_post_dec Replaces x++ with x–

cxx_pre_dec_to_pre_inc Replaces –x with ++x

cxx_pre_inc_to_pre_dec Replaces ++x with –x

cxx_rem_assign_to_div_assign Replaces %= with /=

cxx_rem_to_div Replaces % with /

cxx_remove_negation Replaces !a with a

cxx_remove_void_call Removes calls to a function returning void

cxx_replace_scalar_call Replaces call to a function with 42

cxx_rshift_assign_to_lshift_assign Replaces >>= with <<=

cxx_rshift_to_lshift Replaces << with >>

cxx_sub_assign_to_add_assign Replaces -= with +=

cxx_sub_to_add Replaces - with +

cxx_xor_assign_to_or_assign Replaces ^= with |=

cxx_xor_to_or Replaces ^ with |

negate_mutator Negates conditionals !x to x and x to !x

scalar_value_mutator Replaces zeros with 42, and non-zeros
with 0

8.2 mull-runner

--test-program path Path to a test program

--workers number How many threads to use

--timeout number Timeout per test run (milliseconds)

--report-name filename Filename for the report (only for supported reporters). Defaults to <times-
tamp>.<extension>

--report-dir directory Where to store report (defaults to ‘.’)

--report-patch-base directory Create Patches relative to this directory (defaults to git-project-root if
available, else absolute path will be used)

--reporters reporter Choose reporters:

IDE Prints compiler-like warnings into stdout

SQLite Saves results into an SQLite database

Elements Generates mutation-testing-elements compatible JSON file

Patches Generates patch file for each mutation

GithubAnnotations Print GithubAnnotations for mutants

40 Chapter 8. Command Line Reference

Mull, Release 0.15.1

--ide-reporter-show-killed Makes IDEReporter to also report killed mutations (disabled by default)

--debug Enables Debug Mode: more logs are printed

--strict Enables Strict Mode: all warning messages are treated as fatal errors

--no-test-output Does not capture output from test runs

--no-mutant-output Does not capture output from mutant runs

--no-output Combines -no-test-output and -no-mutant-output

--ld-search-path directory Library search path

8.2. mull-runner 41

Mull, Release 0.15.1

42 Chapter 8. Command Line Reference

CHAPTER

NINE

CONFIGURING MULL

Mull’s IR frontend is configured via a text file in the yaml format.

By default, Mull is looking for mull.yml file in the current directory. If it cannot find it, then it tries the parent directory
and does so recursively until it finds the config file or reaches the root of the file system.

Alternatively, you can set MULL_CONFIG to point to the config file.

Here is an example config file:

mutators:
- cxx_add_to_sub
- cxx_logical
excludePaths: # support regex
- gtest
- gmock
timeout: # milliseconds
- 10000 # 10 seconds
quiet: false # enables additional logging

43

Mull, Release 0.15.1

44 Chapter 9. Configuring Mull

CHAPTER

TEN

HOW MULL WORKS

Note: This document is slightly dated and needs to include the new Mull IR Frontend.

This page contains a short summary of the design and features of Mull. Also the advantages of Mull are highlighted
as well as some known issues.

If you want to learn more than we cover here, Mull has a paper: “Mull it over: mutation testing based on LLVM” (see
below on this page).

10.1 Design

Mull is based on LLVM and uses its API extensively. The main APIs used are: LLVM IR and Clang AST API.

Mull finds and creates mutations of a program in memory, on the level of LLVM bitcode.

All mutations are injected into original program’s code. Each injected mutation is hidden under a conditional flag that
enables that specific mutation. The resulting program is compiled into a single binary which is run multiple times, one
run per mutation. With each run, Mull activates a condition for a corresponding mutation to check how the injection
of that particular mutation affects the execution of a test suite.

Mull runs the tested program and its mutated versions in child subprocesses so that the execution of the tested program
does not affect Mull running in a parent process.

Note: Mull no longer uses LLVM JIT for execution of mutated programs. See the Historical note: LLVM JIT depre-
cation (January 2021).

Mull uses information about source code obtained via Clang AST API to find out which mutations in LLVM bitcode
are valid (i.e. they trace back to the source code), all invalid mutations are ignored in a controlled way.

10.2 Mutations search

The default search algorithm simply finds all mutations that can be found on the level of LLVM bitcode.

The “black search” algorithm called Junk Detection uses source code information provided by Clang AST to filter out
invalid mutations from a set of all possible mutations that are found in LLVM bitcode by the default search algorithm.

The “white search” algorithm starts with collecting source code information via Clang AST and then feeds this
information to the default search algorithm which allows finding valid mutations and filtering out invalid mutations at
the same time.

45

https://github.com/mull-project/mull/pull/938

Mull, Release 0.15.1

The black and white search algorithms are very similar in the reasoning that they do. The only difference is that the
white search filters out invalid mutations just in time as they are found in LLVM bitcode, while the black search does
this after the fact on the raw set of mutations that consists of both valid and invalid mutations.

The black search algorithm appeared earlier and is expected to be more stable. The white search algorithm is currently
in development.

10.3 Supported mutation operators

See Supported Mutation Operators.

10.4 Reporting

Mull reports survived/killed mutations to the console by default. The compiler-like warnings are printed to standard
output.

Mull has an SQLite reporter: mutants and execution results are collected in SQLite database. This kind of reporting
makes it possible to make SQL queries for a more advanced analysis of mutation results.

Mull supports reporting to HTML via Mutation Testing Elements. Mull generates JSON report which is given to
Elements to generate HTML pages.

10.5 Platform support

Mull has a great support of macOS and various Linux systems across all modern versions of LLVM from 3.9.0 to 9.0.0.

Mull supports FreeBSD with minor known issues.

Mull is reported to work on Windows Subsystem for Linux, but no official support yet.

10.6 Test coverage

Mull has 3 layers of testing:

1. Unit and integration testing on the level of C++ classes

2. Integration testing against known real-world projects, such as OpenSSL

3. Integration testing using LLVM Integrated Tester (LIT)

10.7 Advantages

The main advantage of Mull’s design and its approach to finding and doing mutations is very good performance.
Combined with incremental mutation testing one can get mutation testing reports in the order of few seconds.

Another advantage is language agnosticism. The developers of Mull have been focusing on C/C++ as the primary sup-
ported languages but the proof of concepts for other compiled languages, such as Rust and Swift, have been developed.

A lot of development effort have been put into Mull in order to make it stable across different operating systems and
versions of LLVM. Combined with the growing test coverage and highly modular design, Mull is a very stable, well-
tested and maintained system.

46 Chapter 10. How Mull works

SupportedMutations.html
https://github.com/stryker-mutator/mutation-testing-elements

Mull, Release 0.15.1

10.8 Known issue: Precision

Mull works on the level of LLVM bitcode and from there it gets its strengths but also its main weakness: the precision
of the information for mutations is not as high as it is on the source code level. It is a broad area of work where the
developers of Mull have to combine the two levels of information about code: LLVM bitcode and AST in order to make
Mull both fast and precise. Among other things the good suite of integration tests is aimed to provide Mull with a good
contract of supported mutations which are predictable and known to work without any side effects.

10.9 Historical note: LLVM JIT deprecation (January 2021)

The usage of LLVM JIT has been deprecated and all LLVM JIT-related code has been removed from Mull by January
2021.

This issue explains the reasons: PSA: Moving away from JIT.

10.10 Paper

Mull it over: mutation testing based on LLVM (preprint)

@INPROCEEDINGS{8411727,
author={A. Denisov and S. Pankevich},
booktitle={2018 IEEE International Conference on Software Testing, Verification and␣
→˓Validation Workshops (ICSTW)},
title={Mull It Over: Mutation Testing Based on LLVM},
year={2018},
volume={},
number={},
pages={25-31},
keywords={just-in-time;program compilers;program testing;program verification;mutations;
→˓Mull;LLVM IR;mutated programs;compiled programming languages;LLVM framework;LLVM JIT;
→˓tested program;mutation testing tool;Testing;Tools;Computer languages;Instruments;
→˓Runtime;Computer crashes;Open source software;mutation testing;llvm},
doi={10.1109/ICSTW.2018.00024},
ISSN={},
month={April},}

10.11 Additional information about Mull

• 2019 EuroLLVM Developers’ Meeting: A. Denisov “Building an LLVM-based tool: lessons learned” and blog
post Building an LLVM-based tool. Lessons learned

• Mutation Testing: implementation details

• Mutation testing for Swift with Mull: how it could work. Looking for contributors

• Mull meets Rust (LLVM Social Berlin #6, 23.02.2017)

10.8. Known issue: Precision 47

https://github.com/mull-project/mull/issues/798
https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf
https://www.youtube.com/watch?v=Yvj4G9B6pcU
https://lowlevelbits.org/building-an-llvm-based-tool.-lessons-learned/
https://lowlevelbits.org/mutation-testing-implementation-details/
https://stanislaw.github.io/2018/09/03/mull-and-swift-how-it-almost-works.html
https://www.youtube.com/watch?v=VasSufnFswc&feature=youtu.be

Mull, Release 0.15.1

48 Chapter 10. How Mull works

CHAPTER

ELEVEN

HACKING ON MULL

11.1 Internals

Before you start hacking it may be helpful to get through the second and third sections of this paper: Mull it over:
mutation testing based on LLVM from ICST 2018.

11.2 Development Setup using Vagrant

Mull supplies a number of ready to use virtual machines based on VirtualBox.

The machines are managed using Vagrant and Ansible.

Do the following steps to setup a virtual machine:

cd infrastructure
vagrant up debian

This command will:

• setup a virtual machine

• install required packages (cmake, sqlite3, pkg-config, . . .)

• download precompiled version of LLVM

• build Mull against the LLVM

• run Mull’s test suite

• run Mull against OpenSSL and fmtlib as an integration test

Once the machine is up and running you can start hacking over SSH:

vagrant ssh debian

Within the virtual machine Mull’s sources located under /opt/mull.

Alternatively, you can setup a remote toolchain within your IDE, if it supports it.

When you are done feel free to drop the virtual machine:

vagrant destroy debian

You can see the full list of supplied VMs by running this command:

49

https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf
https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf
https://www.es.mdh.se/icst2018/
http://virtualbox.org
https://www.vagrantup.com
https://www.ansible.com

Mull, Release 0.15.1

vagrant status

11.3 Local Development Setup

You can replicate all the steps managed by Vagrant/Ansible manually.

11.3.1 Required packages

Please, look at the corresponding Ansible playbook (debian-playbook.yaml, macos-playbook.yaml, etc.) for the
list of packages required on your OS.

11.3.2 LLVM

You need LLVM to build and debug Mull. You can use any LLVM version between 9.0 and 13.0.

As of the version 0.14.0, Mull can be compiled against LLVM/Clang available through your package manager (e.g. apt
or homebrew).

11.3.3 Build Mull

Create a build folder and initialize build system:

git clone https://github.com/mull-project/mull.git --recursive
cd mull
mkdir build.dir
cd build.dir
cmake -DCMAKE_PREFIX=<cmake search paths> ..
make mull-runner-12
make mull-tests

The cmake search paths should point to the LLVM/Clang CMake config folders. Some examples:

• llvm@12 installed via homebrew on macOS: "/usr/local/opt/llvm@12/lib/cmake/llvm/;/usr/
local/opt/llvm@12/lib/cmake/clang/"

• llvm-12 installed via apt on Ubuntu: "/usr/lib/llvm-13/cmake/;/usr/lib/cmake/clang-13/"

If you are getting linker errors, then it is very likely related to the C++ ABI. Depending on your OS/setup you may need
to tweak the _GLIBCXX_USE_CXX11_ABI (0 or 1):

cmake -DCMAKE_PREFIX=<cmake search paths> -DCMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 ..

50 Chapter 11. Hacking On Mull

https://github.com/mull-project/mull/tree/main/infrastructure

	Getting Started
	Features
	Introduction to Mutation Testing
	Installation
	Install on Ubuntu
	Install on macOS

	Tutorials
	Hello World Example
	Step 1: Checking version
	Step 2: Enabling compiler plugin
	Step 3: Killing mutants, one survived
	Step 4: Killing mutants again, all killed
	Summary

	Compilation Database and Junk Mutations
	Junk Mutations

	Keeping mutants under control
	Mutation Operators
	Filters
	Code Coverage

	Non-standard test suites
	Two-step analysis process
	Tests in interpreted languages

	Working with SQLite report
	Database Schema
	test
	mutation_point
	execution_result

	Running Queries
	Basic exploration
	Deeper dive
	Gotchas

	Supported Mutation Operators
	Incremental mutation testing
	Typical use cases

	Command Line Reference
	mull-cxx
	mull-runner

	Configuring Mull
	How Mull works
	Design
	Mutations search
	Supported mutation operators
	Reporting
	Platform support
	Test coverage
	Advantages
	Known issue: Precision
	Historical note: LLVM JIT deprecation (January 2021)
	Paper
	Additional information about Mull

	Hacking On Mull
	Internals
	Development Setup using Vagrant
	Local Development Setup
	Required packages
	LLVM
	Build Mull

