

Welcome to Mull’s documentation!

Note

Looking for help? We’ve got you covered! ❤️

	Getting Started

	Features

	Introduction to Mutation Testing

	Installation
	Install on Ubuntu

	Install on macOS

	Tutorials
	Hello World Example

	Makefile Integration: OpenSSL

	CMake Integration: fmtlib

	Keeping mutants under control

	Non-standard test suites

	Working with SQLite report

	Supported Mutation Operators

	Incremental mutation testing
	Typical use cases

	Command Line Reference
	mull-runner

	Configuring Mull

	How Mull works
	Design

	Mutations search

	Supported mutation operators

	Reporting

	Platform support

	Test coverage

	Advantages

	Known issue: Precision

	Historical note: LLVM JIT deprecation (January 2021)

	Paper

	Additional information about Mull

	Hacking On Mull
	Internals

	Development Setup using Vagrant

	Local Development Setup

	Support

Getting Started

Note

Looking for help? We’ve got you covered! ❤️

Hello there, we are glad to have you here!

If you are new to the subject, then we recommend you start with the little Introduction into Mutation Testing.
Then, install Mull and go through the tutorials.

As soon as you are comfortable with the basics you may want to learn about various options and settings Mull has,
as well as pick the right set of available mutation operators.

If you are curious about how Mull works under the hood: How Mull works.

If you want to dive deeper and look behind the curtains, then we encourage you to hack on Mull.

If you have any questions feel free to open an issue [https://github.com/mull-project/mull/issues/new] or join the great community of researchers and practitioners on Discord [https://discord.gg/Hphp7dW].

Features

Note

Looking for help? We’ve got you covered! ❤️

	Mull enables mutation testing of C and C++ projects.

	Mull expects a passing test suite to exit with 0. If the test suite fails, it
must exit with a non-zero exit code. Any C/C++ test framework that follows
this convention is supported by Mull.

	Supported Mutations.

	Generate results in various formats:

	IDE Reporter: compiler-like warnings are printed to standard output

	sample.cpp:15:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]

	SQLite Reporter: SQLite database file.

	JSON file that conforms mutation-testing-elements schema [https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/report-schema]

	Mutation Testing Elements HTML Reporter [https://github.com/stryker-mutator/mutation-testing-elements/tree/master/packages/elements]

	Parallelized execution of tests

	Incremental mutation testing.
Working with mutations found in Git Diff changesets.

	Mull requires test programs to be compiled with Clang/LLVM. Mull supports
all LLVM versions starting from LLVM 11 (older versions support older versions).

For a more detailed description of Mull’s architecture, see
How Mull works.

Introduction to Mutation Testing

Note

Looking for help? We’ve got you covered! ❤️

Mutation Testing is a fault-based software testing technique. It evaluates the quality of a test suite by
calculating mutation score and showing gaps in semantic coverage. It does so by creating several
slightly modified versions of the original program, mutants, and running the test suite against each of them.
A mutant is considered to be killed if the test suite detects the change, or survived otherwise.
A mutant is killed if at least one of the tests starts failing.

Each mutation of original program is based on a set of mutation operators (or mutators). A mutator
is a predefined rule that either changes or removes an existing statement or expression in the original program.
Each rule is deterministic: the same set of mutation operators applied to the same program results in the
same set of mutants.

Mutation score is a ratio of killed vs total mutants. E.g., if seven out of ten mutants are killed,
then the score is 0.7, or 70%. The higher the score the better.

Installation

Note

Looking for help? We’ve got you covered! ❤️

Mull comes with a number of precompiled binaries for macOS and Ubuntu.
There are two flavors of packages:

	stable [https://cloudsmith.io/~mull-project/repos/mull-stable/packages/] - tagged releases (0.8.0, 0.9.0, etc.)

	nightly [https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/] - built for each PR

Alternatively, you can find packages on Github [https://github.com/mull-project/mull/releases].

Please, refer to the Hacking on Mull to build Mull from sources.

Install on Ubuntu

Mull supports Ubuntu 18.04 and 20.04.

Setup apt-repository:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-stable/setup.deb.sh' | sudo -E bash

Note: Mull uses Cloudsmith [https://cloudsmith.io] for package distribution.
The above script detects your OS and sets up the apt repo automagically.

Install the package:

sudo apt-get update
sudo apt-get install mull-12 # Ubuntu 20.04

Check if everything works:

$ mull-runner-12 --version
Mull: Practical mutation testing for C and C++
Home: https://github.com/mull-project/mull
Docs: https://mull.readthedocs.io
Version: 0.15.0
Commit: ab159cd
Date: 20 Jan 2022
LLVM: 12.0.0

You can also get the latest “nightly” build using the corresponding source:

curl -1sLf 'https://dl.cloudsmith.io/public/mull-project/mull-nightly/setup.deb.sh' | sudo -E bash

Links:

	Mull Stable [https://cloudsmith.io/~mull-project/repos/mull-stable/packages/]

	Mull Nightly [https://cloudsmith.io/~mull-project/repos/mull-stable/packages/]

Install on macOS

Download the latest version from Github Releases [https://github.com/mull-project/mull/releases/latest].

Check the installation:

$ mull-runner-13 --version
Mull: Practical mutation testing for C and C++
Home: https://github.com/mull-project/mull
Docs: https://mull.readthedocs.io
Version: 0.15.0
Commit: 0252a4cf
Date: 28 Jan 2022
LLVM: 13.0.0

You can also get the latest “nightly” build from here [https://cloudsmith.io/~mull-project/repos/mull-nightly/packages/].

Tutorials

Note

Looking for help? We’ve got you covered! ❤️

	Hello World Example

	Makefile Integration: OpenSSL

	CMake Integration: fmtlib

	Keeping mutants under control

	Non-standard test suites

	Working with SQLite report

Hello World Example

Note

Looking for help? We’ve got you covered! ❤️

The goal of this tutorial is to demonstrate how to run Mull on minimal C
programs. After reading it you should have a basic understanding of what
arguments Mull needs in order to create mutations in your programs, run the
mutants and generate mutation testing reports.

TL;DR version: if you want to run a single copy and paste example, scroll
down to Killing mutants again, all killed below.

Note

Clang 11 or newer is required!

Step 1: Checking version

Mull comes in a form of a compiler plugin and therefore tied to specific versions
of Clang and LLVM. As a consequence of that, tools and plugins have a suffix with
the actual Clang/LLVM version.

This tutorial assumes that you are using Clang 12 and that you have
installed Mull on your system and have the mull-runner-12
executable available:

$ mull-runner-12 -version
Mull: LLVM-based mutation testing
https://github.com/mull-project/mull
Version: 0.15.0
Commit: a4be349e
Date: 18 Jan 2022
LLVM: 12.0.1

Step 2: Enabling compiler plugin

Let’s create a C++ program:

int main() {
 return 0;
}

and compile it:

$ clang-12 main.cpp -o hello-world

We can already try using mull-runner and see what happens:

$ mull-runner-12 ./hello-world
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 4ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 10ms

Notice the No mutants found message! Now, Mull is ready to work with the executable
but there are no mutants: we haven’t compiled the program with the compiler plugin that embeds
mutants into our executable.

Let’s fix that!
To pass the plugin to Clang, you need to add a few compiler flags.

Note

For Clang 11 also pass -O1, otherwise the plugin won’t be called.

Note

-grecord-command-line doesn’t currently work if you compile several files in one go,
e.g. clang a.c b.c c.c. In this case, please remove the flag.

$ clang-12 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 main.cpp -o hello-world
[warning] Mull cannot find config (mull.yml). Using some defaults.

Notice the warning: Mull needs a config.
However, in this tutorial we can ignore the warning and rely on the defaults.

You can learn more about the config here.

Let’s run mull-runner again:

$ mull-runner-12 ./hello-world
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 4ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 6ms
[info] No mutants found. Mutation score: infinitely high
[info] Total execution time: 12ms

Still no mutants, but this time it is because we don’t have any code Mull can mutate.

Step 3: Killing mutants, one survived

Let’s add some code:

bool valid_age(int age) {
 if (age >= 21) {
 return true;
 }
 return false;
}

int main() {
 bool test1 = valid_age(25) == true;
 if (!test1) {
 /// test failed
 return 1;
 }

 bool test2 = valid_age(20) == false;
 if (!test2) {
 /// test failed
 return 1;
 }

 /// success
 return 0;
}

We re-compile this new code using the plugin and run the Mull again. This
time we also want to add an additional flag -ide-reporter-show-killed which
tells Mull to print killed mutations. Normally we are not interested in seeing
killed mutants in console output but in this tutorial we want to be more
verbose.

$ clang-12 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 main.cpp -o hello-world
$ mull-runner-12 -ide-reporter-show-killed hello-world
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 151ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 3ms
[info] Running mutants (threads: 4)
 [################################] 4/4. Finished in 10ms
[info] Killed mutants (3/4):
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
 if (age >= 21) {
 ^
/tmp/sc-tTV8a84lL/main.cpp:9:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test1 = valid_age(25) == true;
 ^
/tmp/sc-tTV8a84lL/main.cpp:15:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test2 = valid_age(20) == false;
 ^
[info] Survived mutants (1/4):
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Survived: Replaced >= with > [cxx_ge_to_gt]
 if (age >= 21) {
 ^
[info] Mutation score: 75%
[info] Total execution time: 167ms

What we are seeing now is four mutations: three mutations are Killed, another
one is Survived. If we take a closer look at the code and the contents
of the tests test1 and test2 we will see that one important test case
is missing: the one that would test the age 21 and this is exactly
what the survived mutation is about: Mull has replaced age >= 21 with
age > 21 and neither of the two tests have detected the mutation.

Let’s add the third test case and see what happens.

Step 4: Killing mutants again, all killed

The code:

bool valid_age(int age) {
 if (age >= 21) {
 return true;
 }
 return false;
}

int main() {
 bool test1 = valid_age(25) == true;
 if (!test1) {
 /// test failed
 return 1;
 }

 bool test2 = valid_age(20) == false;
 if (!test2) {
 /// test failed
 return 1;
 }

 bool test3 = valid_age(21) == true;
 if (!test3) {
 /// test failed
 return 1;
 }

 /// success
 return 0;
}

$ clang-12 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 main.cpp -o hello-world
$ mull-runner-12 -ide-reporter-show-killed hello-world
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 469ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 4ms
[info] Running mutants (threads: 5)
 [################################] 5/5. Finished in 12ms
[info] Killed mutants (5/5):
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with > [cxx_ge_to_gt]
 if (age >= 21) {
 ^
/tmp/sc-tTV8a84lL/main.cpp:2:11: warning: Killed: Replaced >= with < [cxx_ge_to_lt]
 if (age >= 21) {
 ^
/tmp/sc-tTV8a84lL/main.cpp:9:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test1 = valid_age(25) == true;
 ^
/tmp/sc-tTV8a84lL/main.cpp:15:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test2 = valid_age(20) == false;
 ^
/tmp/sc-tTV8a84lL/main.cpp:21:30: warning: Killed: Replaced == with != [cxx_eq_to_ne]
 bool test3 = valid_age(21) == true;
 ^
[info] All mutations have been killed
[info] Mutation score: 100%
[info] Total execution time: 487ms

In this last run, we see that all mutants were killed since we covered with tests
all cases around the <=.

Summary

As a summary, all you need to enable Mull is to add a few compiler flags to the
build system and then run mull-runner against the resulting executable.
Just to recap:

$ clang-12 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 main.cpp -o hello-world
$ mull-runner-12 hello-world

Next Steps

Take a look at makefile or CMake integrations.

Makefile Integration: OpenSSL

Note

Looking for help? We’ve got you covered! ❤️

This tutorial demonstrates how to integrate Mull into a custom Makefile-based build system.

We use OpenSSL as an example.

Note

If you are new to Mull, then Hello World example is a good starting point.

Step 1. Check out the source code

openssl-3.0.1 is the latest version we tested.

git clone https://github.com/openssl/openssl.git \
 --branch openssl-3.0.1 \
 --depth 1

Step 2. Create sample Mull config

Create a file openssl/mull.yml with the following contents:

mutators:
 - cxx_add_to_sub

Step 3. Configure and build OpenSSL

cd openssl
export CC=clang-12
./config -O0 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/lib/mull-ir-frontend-12 \
 -g -grecord-command-line
make build_generated -j
make ./test/bio_enc_test -j

Step 4. Run Mull against OpenSSL’s tests

mull-runner-12 ./test/bio_enc_test

You should see similar (and pretty long) output:

[info] Using config /tmp/sc-g6cD7gfN4/openssl/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 638ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 281ms
[info] Running mutants (threads: 8)
 [################################] 1606/1606. Finished in 147786ms
[info] Survived mutants (1588/1606):
/tmp/sc-g6cD7gfN4/openssl/apps/lib/opt.c:1126:15: warning: Survived: Replaced + with - [cxx_add_to_sub]
 i = 2 + (int)strlen(o->name);
 ^
/tmp/sc-g6cD7gfN4/openssl/apps/lib/opt.c:1128:20: warning: Survived: Replaced + with - [cxx_add_to_sub]
 i += 1 + strlen(valtype2param(o));
 ^
/tmp/sc-g6cD7gfN4/openssl/crypto/aria/aria.c:546:20: warning: Survived: Replaced + with - [cxx_add_to_sub]
 int Nr = (bits + 256) / 32;
 ^
/tmp/sc-g6cD7gfN4/openssl/crypto/asn1/a_bitstr.c:62:13: warning: Survived: Replaced + with - [cxx_add_to_sub]
 ret = 1 + len;
 ^
<truncated>
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:282:47: warning: Survived: Replaced + with - [cxx_add_to_sub]
 l1 = bn1 == NULL ? 0 : (BN_num_bytes(bn1) + (BN_is_negative(bn1) ? 1 : 0));
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:283:47: warning: Survived: Replaced + with - [cxx_add_to_sub]
 l2 = bn2 == NULL ? 0 : (BN_num_bytes(bn2) + (BN_is_negative(bn2) ? 1 : 0));
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:301:32: warning: Survived: Replaced + with - [cxx_add_to_sub]
 len = ((l1 > l2 ? l1 : l2) + bytes - 1) / bytes * bytes;
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/random.c:24:54: warning: Survived: Replaced + with - [cxx_add_to_sub]
 test_random_state[pos] += test_random_state[(pos + 28) % 31];
 ^
[info] Mutation score: 1%
[info] Total execution time: 149344ms

Mull says that 1588 out of 1606 mutants survived. That’s a lot.
Why so many and how do we handle this?

The answer is in the next tutorial Keeping mutants under control.

CMake Integration: fmtlib

Note

Looking for help? We’ve got you covered! ❤️

This tutorial demonstrates how to integrate Mull into a CMake-based project.

We use fmtlib [https://github.com/fmtlib/fmt/blob/master/LICENSE.rst] as an example.

Note

If you are new to Mull, then Hello World example is a good starting point.

Step 1. Check out the source code

git clone https://github.com/fmtlib/fmt --depth 1

Step 2. Create sample Mull config

Create a file fmt/mull.yml with the following contents:

mutators:
 - cxx_add_to_sub

Step 3. Configure and build fmtlib

mkdir fmt/build.dir
cd fmt/build.dir
export CXX=clang++-12
cmake \
 -DCMAKE_CXX_FLAGS="-O0 -fexperimental-new-pass-manager -fpass-plugin=/usr/lib/mull-ir-frontend-12 -g -grecord-command-line" \
 ..
make core-test -j

Step 4. Run Mull against fmtlib tests

mull-runner-12 ./bin/core-test

You should see similar output:

[info] Using config /tmp/sc-ySbkbNvt3/fmt/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Filter mutants (threads: 1)
 [################################] 1/1. Finished in 1ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 8ms
[info] Running mutants (threads: 8)
 [################################] 164/164. Finished in 363ms
[info] Survived mutants (160/164):
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2237:14: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return len + !len;
 ^
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2267:24: warning: Survived: Replaced + with - [cxx_add_to_sub]
 value = value * 10 + unsigned(*p - '0');
 ^
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2277:31: warning: Survived: Replaced + with - [cxx_add_to_sub]
 prev * 10ull + unsigned(p[-1] - '0') <= max
 ^
<truncated>
/tmp/sc-ySbkbNvt3/fmt/test/gtest/gmock-gtest-all.cc:12210:36: warning: Survived: Replaced + with - [cxx_add_to_sub]
 IsUTF8TrailByte(s[i + 1]) &&
 ^
/tmp/sc-ySbkbNvt3/fmt/test/gtest/gmock-gtest-all.cc:12211:36: warning: Survived: Replaced + with - [cxx_add_to_sub]
 IsUTF8TrailByte(s[i + 2]) &&
 ^
/tmp/sc-ySbkbNvt3/fmt/test/gtest/gmock-gtest-all.cc:14386:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
[info] Mutation score: 2%
[info] Total execution time: 491ms

We’ve got lots of survived mutants.

We can ignore some of them (specifically the ones coming from gtest and gmock) by extending the config file as follows:

mutators:
 - cxx_add_to_sub
excludePaths:
 - .*gtest.*
 - .*gmock.*

After rerunning Mull:

$ mull-runner-12 ./bin/core-test
[info] Using config /tmp/sc-ySbkbNvt3/fmt/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Filter mutants (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Running mutants (threads: 8)
 [################################] 96/96. Finished in 312ms
[info] Survived mutants (92/96):
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2237:14: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return len + !len;
 ^
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2267:24: warning: Survived: Replaced + with - [cxx_add_to_sub]
 value = value * 10 + unsigned(*p - '0');
 ^
/tmp/sc-ySbkbNvt3/fmt/include/fmt/core.h:2277:31: warning: Survived: Replaced + with - [cxx_add_to_sub]
 prev * 10ull + unsigned(p[-1] - '0') <= max
 ^
<truncated>
/tmp/sc-ySbkbNvt3/fmt/include/fmt/format.h:2335:40: warning: Survived: Replaced + with - [cxx_add_to_sub]
 if (negative) abs_value = ~abs_value + 1;
 ^
/tmp/sc-ySbkbNvt3/fmt/include/fmt/format.h:2337:34: warning: Survived: Replaced + with - [cxx_add_to_sub]
 auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
 ^
[info] Mutation score: 4%
[info] Total execution time: 368ms

We get fewer mutants, but the number can be reduced even further.

Step 5. Filter out unreachable mutants

This step left as an exercise for the reader: Keeping mutants under control.

Hint: use Code Coverage filter.

Keeping mutants under control

Note

Looking for help? We’ve got you covered! ❤️

This tutorial shows how to control the amount of mutants.

—

When you apply mutation testing for the first time, you might be overwhelmed by
the number of mutants - what do you do when you see that several hundred or thousands of mutants survived?

The right way to go about it is to put the number of mutants under control and
work through them incrementally.

OpenSSL Example

The OpenSSL tutorial makes a great example of when we want to decrease the amount of mutants.

To recap, recreate the same setup.

	Checkout OpenSSL:

git clone https://github.com/openssl/openssl.git \
 --branch openssl-3.0.1 \
 --depth 1

	Create Mull config file openssl/mull.yml:

mutators:
 - cxx_add_to_sub

	Build OpenSSL:

cd openssl
export CC=clang-12
./config -O0 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/lib/mull-ir-frontend-12 \
 -g -grecord-command-line
make build_generated -j
make ./test/bio_enc_test -j

	Run Mull:

$ mull-runner-12 ./test/bio_enc_test
[info] Using config /tmp/sc-g6cD7gfN4/openssl/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 638ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 281ms
[info] Running mutants (threads: 8)
 [################################] 1606/1606. Finished in 147786ms
[info] Survived mutants (1588/1606):
/tmp/sc-g6cD7gfN4/openssl/apps/lib/opt.c:1126:15: warning: Survived: Replaced + with - [cxx_add_to_sub]
 i = 2 + (int)strlen(o->name);
 ^
/tmp/sc-g6cD7gfN4/openssl/apps/lib/opt.c:1128:20: warning: Survived: Replaced + with - [cxx_add_to_sub]
 i += 1 + strlen(valtype2param(o));
 ^
/tmp/sc-g6cD7gfN4/openssl/crypto/aria/aria.c:546:20: warning: Survived: Replaced + with - [cxx_add_to_sub]
 int Nr = (bits + 256) / 32;
 ^
/tmp/sc-g6cD7gfN4/openssl/crypto/asn1/a_bitstr.c:62:13: warning: Survived: Replaced + with - [cxx_add_to_sub]
 ret = 1 + len;
 ^
<truncated>
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:282:47: warning: Survived: Replaced + with - [cxx_add_to_sub]
 l1 = bn1 == NULL ? 0 : (BN_num_bytes(bn1) + (BN_is_negative(bn1) ? 1 : 0));
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:283:47: warning: Survived: Replaced + with - [cxx_add_to_sub]
 l2 = bn2 == NULL ? 0 : (BN_num_bytes(bn2) + (BN_is_negative(bn2) ? 1 : 0));
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/format_output.c:301:32: warning: Survived: Replaced + with - [cxx_add_to_sub]
 len = ((l1 > l2 ? l1 : l2) + bytes - 1) / bytes * bytes;
 ^
/tmp/sc-g6cD7gfN4/openssl/test/testutil/random.c:24:54: warning: Survived: Replaced + with - [cxx_add_to_sub]
 test_random_state[pos] += test_random_state[(pos + 28) % 31];
 ^
[info] Mutation score: 1%
[info] Total execution time: 149344ms

In the end, you should see about ~1.5k survived mutants.

There are at least two kinds of “problematic” mutants there:

	not interesting: e.g., we probably don’t care about mutants under testutil

	unreachable: the test suite cannot detect them

Let’s try to fix these issues one by one.

File Path Filters

First, let’s tell Mull to not mutate and not to run Mutants under testutil.

We can extend the same mull.yml file we used to configure Mull at the very beginning.

Mull comes with two path-based filters: excludePaths and includePaths.
You can use these to either exclude or include mutations based on their file-system location.
To ignore any mutants under testutil edit mull.yml as follows:

mutators:
 - cxx_add_to_sub
excludePaths:
 - .*testutil.*

Now, rerun Mull:

$ mull-runner-12 ./test/bio_enc_test
[info] Using config /tmp/sc-g6cD7gfN4/openssl/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 282ms
[info] Filter mutants (threads: 1)
 [################################] 1/1. Finished in 2ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 283ms
[info] Running mutants (threads: 8)
 [################################] 1585/1585. Finished in 149522ms
[info] Survived mutants (1568/1585):
<truncated>
[info] Mutation score: 1%
[info] Total execution time: 150815ms

Note

Some config options understood by both mull-ir-frontend and mull-runner.
In this case, we don’t need to recompile the program under test - mull-runner picks
up the config changes and filters out not needed mutants.

Though, ./test/bio_enc_test still contains the mutants from testutil, they are just ignored.

Total 1585 mutants vs 1606 previously. Slightly better, but still not great.

We need something heavier than that!

Code Coverage Filter

Mull understands code coverage, but for that to work we should recompile OpenSSL
to include the instrumentation information:

make clean
./config -O0 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 -fprofile-instr-generate -fcoverage-mapping
make build_generated -j
make ./test/bio_enc_test -j

Note

This time, mull-ir-frontend picks up excludePaths from mull.yml
and ./test/bio_enc_test no longer contains mutations from testutil.

Rerun Mull:

$ mull-runner-12 ./test/bio_enc_test
[info] Using config /tmp/sc-g6cD7gfN4/openssl/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 1281ms
[info] Extracting coverage information (threads: 1)
 [################################] 1/1. Finished in 361ms
[info] Filter mutants (threads: 1)
 [################################] 1/1. Finished in 36ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 326ms
[info] Running mutants (threads: 8)
 [################################] 34/34. Finished in 7805ms
[info] Survived mutants (18/34):
/tmp/sc-g6cD7gfN4/openssl/crypto/conf/conf_mod.c:556:22: warning: Survived: Replaced + with - [cxx_add_to_sub]
 size = strlen(t) + strlen(sep) + strlen(OPENSSL_CONF) + 1;
 ^
/tmp/sc-g6cD7gfN4/openssl/crypto/conf/conf_mod.c:556:36: warning: Survived: Replaced + with - [cxx_add_to_sub]
 size = strlen(t) + strlen(sep) + strlen(OPENSSL_CONF) + 1;
 ^
<truncated>
/tmp/sc-g6cD7gfN4/openssl/providers/implementations/rands/drbg_ctr.c:427:37: warning: Survived: Replaced + with - [cxx_add_to_sub]
 ctr32 = GETU32(ctr->V + 12) + blocks;
 ^
/tmp/sc-g6cD7gfN4/openssl/providers/implementations/rands/drbg_ctr.c:555:28: warning: Survived: Replaced + with - [cxx_add_to_sub]
 drbg->seedlen = keylen + 16;
 ^
/tmp/sc-g6cD7gfN4/openssl/providers/implementations/rands/seed_src.c:191:44: warning: Survived: Replaced + with - [cxx_add_to_sub]
 bytes_needed = entropy >= 0 ? (entropy + 7) / 8 : 0;
 ^
[info] Mutation score: 47%
[info] Total execution time: 12449ms

A few things worth mentioning here:

	there is a new running phase Extracting coverage information: Mull handles code coverage info automatically

	we’ve got 34 mutants instead of ~1.5k

	total execution time dropped from ~150 seconds to only 12 seconds

With this improvement in place there are two ways forward:

	Extend the test suite to ensure there are no survived mutants

	Add more mutators and go to the step 1 above.

Non-standard test suites

Note

Looking for help? We’ve got you covered! ❤️

The goal of this tutorial is to demonstrate how to use Mull with ‘non-standard’
test suites, such as when the test suite is a separate program. The best example
is integration tests written in interpreted languages.

Tests in interpreted languages

Consider the following (absolutely synthetic) program under test:

extern int printf(const char *, ...);
extern int strcmp(const char *, const char *);

int test1(int a, int b) {
 return a + b;
}

int test2(int a, int b) {
 return a * b;
}

int main(int argc, char **argv) {
 if (argc == 1) {
 printf("NOT ENOUGH ARGUMENTS\n");
 return 1;
 }
 if (strcmp(argv[1], "first test") == 0) {
 if (test1(2, 5) == 7) {
 printf("first test passed\n");
 return 0;
 } else {
 printf("first test failed\n");
 return 1;
 }
 } else if (strcmp(argv[1], "second test") == 0) {
 if (test2(2, 5) == 10) {
 printf("second test passed\n");
 return 0;
 } else {
 printf("second test failed\n");
 return 1;
 }
 } else {
 printf("INCORRECT TEST NAME %s\n", argv[1]);
 return 1;
 }
 return 0;
}

The program accepts a command-line argument, and depending on the value of the
argument it either runs one of the tests or exists with an error.
Here is an example:

$ clang main.c -o test
$./test
NOT ENOUGH ARGUMENTS
$./test "first test"
first test passed
$./test "second test"
second test passed
$./test "third test"
INCORRECT TEST NAME third test

Running these tests manually is a tedious and error-prone process, so we create
a separate test runner:

import sys
import subprocess

test_executable = sys.argv[1]

subprocess.run([test_executable, "first test"], check=True)
subprocess.run([test_executable, "second test"], check=True)

The script takes the program under test as its argument and runs the tests against
that program.

$ clang main.c -o test
$ python3 test.py ./test
first test passed
second test passed

Usage of Mull in this case is very similar to a “typical” use-case (see Hello World tutorial).

	Create config file mull.yml:

mutators:
 - cxx_add_to_sub
 - cxx_mul_to_div

	Generate mutated executable

$ clang-12 -fexperimental-new-pass-manager \
 -fpass-plugin=/usr/local/lib/mull-ir-frontend-12 \
 -g -grecord-command-line \
 main.c -o test.exe

	Run analysis using mull-runner:

$ mull-runner-12 ./test.exe -ide-reporter-show-killed \
 -test-program=python3 -- test.py ./test.exe
[info] Using config /tmp/sc-kGN35Gr1f/mull.yml
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 347ms
[info] Filter mutants (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 76ms
[info] Running mutants (threads: 2)
 [################################] 2/2. Finished in 81ms
[info] Killed mutants (2/2):
/tmp/sc-kGN35Gr1f/main.c:5:12: warning: Killed: Replaced + with - [cxx_add_to_sub]
 return a + b;
 ^
/tmp/sc-kGN35Gr1f/main.c:9:12: warning: Killed: Replaced * with / [cxx_mul_to_div]
 return a * b;
 ^
[info] All mutations have been killed
[info] Mutation score: 100%
[info] Total execution time: 509ms

Note, test.exe appears twice in the arguments list: the first appearance
is required for mull-runner to extract the mutants generated at the second step.
The second appearance is passed as an argument to the test program test.py.

Working with SQLite report

Note

Looking for help? We’ve got you covered! ❤️

From the very beginning, we didn’t want to impose our vision on treating the
results of mutation testing. Some people do not care about the mutation score,
while others do care, but want to calculate it slightly differently.

To solve this problem, Mull splits execution and reporting into separate phases.
What Mull does is apply mutation testing on a program, collect as much information
as possible, and then pass this information to one of several reporters.

At the moment of writing, there are three reporters:

	IDEReporter: prints mutants in the format of clang warnings

	MutationTestingElementsReporter: emits a JSON-file compatible with Mutation Testing Elements [https://github.com/stryker-mutator/mutation-testing-elements].

	SQLiteReporter: saves all the information to an SQLite database

	PatchesReporter: saves each mutant as a .patch that can be applied on the original code

One of the ways to do a custom analysis of mutation testing results is to run queries
against the SQLite database. The rest of this document describes how to work with Mull’s SQLite database.

Preparing the database

The benefit of having results in an SQLite database is that we can run as many
queries as we want and to examine the results without re-running Mull, which can
be a long-running task.

If you don’t have a sample project ready, then it is a good idea to check out
the fmtlib tutorial.

To enable SQLite reporter, add -reporters=SQLite to the CLI options.
It is also recommended to specify the report name via -report-name, e.g.:

mull-runner-12 --reporters=SQLite --report-name=tutorial ./bin/core-test

In the end, you should see something like this:

[info] Results can be found at './tutorial.sqlite'

Open the database and enable better formatting (optional):

sqlite3 ./tutorial.sqlite
sqlite> .header on
sqlite> .mode line

Database Schema

Now you can examine contents of the database:

sqlite> .tables
information mutant

sqlite> .schema information
CREATE TABLE information (
 key TEXT,
 value TEXT
);
sqlite> .schema mutant
CREATE TABLE mutant (
 mutator TEXT,
 filename TEXT,
 directory TEXT,
 line_number INT,
 column_number INT,
 status INT,
 duration INT,
 stdout TEXT,
 stderr TEXT
);

The database contains two tables: mutant and information.

The information table stores a number of key/value pairs with certain facts about Mull:

sqlite> select * from information;
 key = LLVM Version
value = 12.0.1

 key = Build Date
value = 08 Mar 2022

 key = Commit
value = 8f01ac4d

 key = Mull Version
value = 0.16.0

 key = URL
value = https://github.com/mull-project/mull

And the mutant table stores the name of the mutation operator, the location of the mutant,
and information about the execution of each mutant: duration, status (passed, failed, etc) and the
text from standard out and err streams.

sqlite> select * from mutant limit 1;
 mutant_id = cxx_add_to_sub:/tmp/sc-76UJhQXB4/fmt/include/fmt/core.h:822:23
 mutator = cxx_add_to_sub
 filename = /tmp/sc-76UJhQXB4/fmt/include/fmt/core.h
 directory =
 line_number = 822
column_number = 23
 status = 1
 duration = 14
 stdout = [==========] Running 55 tests from 19 test suites.
<truncated>
 stderr =

The status field stores a numerical value as described in the following table:

	Numeric value

	String Value

	Description

	1

	Failed

	test has failed (the exit code does not equal 0)

	2

	Passed

	test has passed (the exit code equals 0)

	3

	Timedout

	test execution took more time than expected

	4

	Crashed

	test program was terminated

	5

	AbnormalExit

	test program exited (some test frameworks call exit(1) when test fails)

	6

	DryRun

	test was not run (DryRun mode enabled)

	7

	FailFast

	mutant was killed by another test so this test run can be skipped

Basic exploration

Let’s check how many mutants:

sqlite> select count(*) from mutant;
count(*) = 163

Let’s see some stats on the execution time:

sqlite> select avg(duration), max(duration) from mutant;
avg(duration) = 10.5276073619632
max(duration) = 104

Let’s see what’s wrong with that slow run:

sqlite> select mutant_id, status, duration from mutant order by duration desc limit 1;
mutant_id = cxx_add_to_sub:/tmp/sc-76UJhQXB4/fmt/include/fmt/format.h:684:23
 status = 3
 duration = 104

The mutant status is 3, which is a timeout according to the table above.

Deeper dive

Exploration via SQLite is cool, but let’s do some math and calculate the mutation
score using SQL.

To calculate mutation score, we will use the following formula:
of killed mutants / # of all mutants, where killed means that the status
of a mutant is anything but Passed.

Counting all the mutants is rather trivial but a bit lengthy, so let’s create an SQL view:

sqlite> create view killed_mutants as select * from mutant where status <> 2;
sqlite> select count(*) as killed from killed_mutants;
killed = 4

With the number of killed mutants in place we can calculate the mutation score:

sqlite> select round(
 (select count(*) from killed_mutants) * 1.0 /
 (select count(*) from mutant) * 100) as score;
score = 2.0

Gotchas

One important thing to remember: by default Mull also stores stderr and stdout
of each test run, which can blow up the size of the database by tens on gigabytes.

If you don’t need the stdout/stderr, then it is recommended to disable it via one of the following options --no-output, --no-test-output, --no-mutant-output.

Alternatively, you can strip this information from the database using this query:

begin transaction;
create temporary table t1_backup as select test_id, mutation_point_id, status, duration FROM execution_result;
drop table execution_result;
create table execution_result as select * FROM t1_backup;
drop table t1_backup;
commit;
vacuum;

Supported Mutation Operators

Note

Looking for help? We’ve got you covered! ❤️

	Operator Name

	Operator Semantics

	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_remove_void_call

	Removes calls to a function returning void

	cxx_replace_scalar_call

	Replaces call to a function with 42

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

	Groups:
	
	cxx_all

	cxx_assignment, cxx_increment, cxx_decrement, cxx_arithmetic, cxx_comparison, cxx_boundary, cxx_bitwise, cxx_calls

	cxx_arithmetic

	cxx_minus_to_noop, cxx_add_to_sub, cxx_sub_to_add, cxx_mul_to_div, cxx_div_to_mul, cxx_rem_to_div

	cxx_arithmetic_assignment

	cxx_add_assign_to_sub_assign, cxx_sub_assign_to_add_assign, cxx_mul_assign_to_div_assign, cxx_div_assign_to_mul_assign, cxx_rem_assign_to_div_assign

	cxx_assignment

	cxx_bitwise_assignment, cxx_arithmetic_assignment, cxx_const_assignment

	cxx_bitwise

	cxx_bitwise_not_to_noop, cxx_and_to_or, cxx_or_to_and, cxx_xor_to_or, cxx_lshift_to_rshift, cxx_rshift_to_lshift

	cxx_bitwise_assignment

	cxx_and_assign_to_or_assign, cxx_or_assign_to_and_assign, cxx_xor_assign_to_or_assign, cxx_lshift_assign_to_rshift_assign, cxx_rshift_assign_to_lshift_assign

	cxx_boundary

	cxx_le_to_lt, cxx_lt_to_le, cxx_ge_to_gt, cxx_gt_to_ge

	cxx_calls

	cxx_remove_void_call, cxx_replace_scalar_call

	cxx_comparison

	cxx_eq_to_ne, cxx_ne_to_eq, cxx_le_to_gt, cxx_lt_to_ge, cxx_ge_to_lt, cxx_gt_to_le

	cxx_const_assignment

	cxx_assign_const, cxx_init_const

	cxx_decrement

	cxx_pre_dec_to_pre_inc, cxx_post_dec_to_post_inc

	cxx_default

	cxx_increment, cxx_arithmetic, cxx_comparison, cxx_boundary

	cxx_increment

	cxx_pre_inc_to_pre_dec, cxx_post_inc_to_post_dec

	cxx_logical

	cxx_logical_and_to_or, cxx_logical_or_to_and, cxx_remove_negation

	experimental

	negate_mutator, scalar_value_mutator, cxx_logical

Incremental mutation testing

Note

Looking for help? We’ve got you covered! ❤️

Normally, Mull looks for mutations in all files of a project. Depending on a
project’s size, a number of mutations can be very large, so running Mull
against all of them might be a rather slow process. Speed aside, an analysis of
a large mutation data sets can be very time consuming work to be done by a
user.

Incremental mutation testing is a feature that enables running Mull only on the
mutations found in Git Diff changesets. Instead of analysing all files and
functions, Mull only finds mutations in the source lines that are covered by
a particular Git Diff changeset.

Example: if a Git diff is created from a project’s Git tree and the diff is only
one line, Mull will only find mutations in that line and will skip everything
else.

To enable incremental mutation testing, two arguments have to be provided to
Mull: -git-diff-ref=<branch or commit> and -git-project-root=<path>
which is a path to a project’s Git root path.

An additional debug option -debug can be useful for a visualization of how
exactly Mull whitelists or blacklists found source lines.

Note: Incremental mutation testing is an experimental feature. Things might
go wrong. If you encounter any issues, please report them on the
mull/issues [https://github.com/mull-project/mull/issues] tracker.

Typical use cases

Under the hood, Mull runs git diff from a project’s root folder. There
are at least three reasonable options for using the -git-diff-ref argument:

	-git-diff-ref=origin/main

Mull is run from a branch with a few commits against a main branch such as
main, master or equivalent. This is what you get from your branch when you
simply do git diff origin/master. This way you can also test your branch
if you have Mull running as part of your CI workflow.

	-git-diff-ref=. (unstaged), -git-diff-ref=HEAD (unstaged + staged)

Mull is run against a diff between the “unclean” tree state and your last
commit. This use case is useful when you want to check your work-in-progress
code with Mull before committing your changes.

	-git-diff-ref=COMMIT^!

Mull is run against a diff of a specific commit (see also
How can I see the changes in a Git commit? [https://stackoverflow.com/questions/17563726/how-can-i-see-the-changes-in-a-git-commit]
). This option should be used with caution because Mull does not perform
a git checkout to switch to a given commit’s state. Mull always stands
on top of the existing tree, so if a provided commit has already been
overridden by more recent commits, Mull will not produce the results for
that earlier commit which can result in a misleading information in the
mutation reports. Use this option only if you are sure that no newer commits
in your Git tree have touched the file(s) you are interested in.

Command Line Reference

Note

Looking for help? We’ve got you covered! ❤️

	mull-runner

mull-runner

Note

Looking for help? We’ve got you covered! ❤️

	--test-program path

	Path to a test program

	--workers number

	How many threads to use

	--timeout number

	Timeout per test run (milliseconds)

	--report-name filename

	Filename for the report (only for supported reporters). Defaults to <timestamp>.<extension>

	--report-dir directory

	Where to store report (defaults to ‘.’)

	--report-patch-base directory

	Create Patches relative to this directory (defaults to git-project-root if available, else absolute path will be used)

	--reporters reporter

	Choose reporters:

	IDE

	Prints compiler-like warnings into stdout

	SQLite

	Saves results into an SQLite database

	Elements

	Generates mutation-testing-elements compatible JSON file

	Patches

	Generates patch file for each mutation

	GithubAnnotations

	Print GithubAnnotations for mutants

	--ide-reporter-show-killed

	Makes IDEReporter to also report killed mutations (disabled by default)

	--debug

	Enables Debug Mode: more logs are printed

	--strict

	Enables Strict Mode: all warning messages are treated as fatal errors

	--allow-surviving

	Do not treat mutants surviving as an error

	--no-test-output

	Does not capture output from test runs

	--no-mutant-output

	Does not capture output from mutant runs

	--no-output

	Combines -no-test-output and -no-mutant-output

	--ld-search-path directory

	Library search path

	--coverage-info string

	Path to the coverage info file (LLVM’s profdata)

	--debug-coverage

	Print coverage ranges

Configuring Mull

Note

Looking for help? We’ve got you covered! ❤️

Mull’s IR frontend is configured via a text file in the yaml format.

By default, Mull is looking for mull.yml file in the current directory.
If it cannot find it, then it tries the parent directory and does so recursively
until it finds the config file or reaches the root of the file system.

Alternatively, you can set MULL_CONFIG to point to the config file.

Here is an example config file:

mutators:
 - cxx_add_to_sub
 - cxx_logical
excludePaths: # support regex
 - gtest
 - gmock
timeout: # milliseconds
 - 10000 # 10 seconds
quiet: false # enables additional logging

How Mull works

Note

Looking for help? We’ve got you covered! ❤️

This page contains a short summary of the design and features of Mull. Also
the advantages of Mull are highlighted as well as some known issues.

If you want to learn more than we cover here, Mull has a paper:
“Mull it over: mutation testing based on LLVM” (see below on this page).

Design

Mull is based on LLVM and uses its API extensively. The main APIs used are:
LLVM IR and Clang AST API.

Mull finds and creates mutations of a program in memory, on the level of LLVM
bitcode.

All mutations are injected into original program’s code. Each injected mutation
is hidden under a conditional flag that enables that specific mutation. The
resulting program is compiled into a single binary which is run multiple times,
one run per mutation. With each run, Mull activates a condition for a
corresponding mutation to check how the injection of that particular mutation
affects the execution of a test suite.

Mull runs the tested program and its mutated versions in child subprocesses so
that the execution of the tested program does not affect Mull running in a
parent process.

Note: Mull no longer uses LLVM JIT for execution of mutated programs.
See the
Historical note: LLVM JIT deprecation (January 2021).

Mull uses information about source code obtained via Clang AST API to find out
which mutations in LLVM bitcode are valid (i.e. they trace back to the source
code), all invalid mutations are ignored in a controlled way.

Mutations search

The default search algorithm simply finds all mutations that can be found on the
level of LLVM bitcode.

The “IR search” algorithm called Junk Detection uses source code information
provided by Clang AST to filter out invalid mutations from a set of all possible
mutations that are found in LLVM IR by the default search algorithm.

The “AST search” algorithm starts with collecting source code information
via Clang AST and then feeds this information to the default search algorithm
which allows finding valid mutations and filtering out invalid mutations
at the same time.

The IR and AST search algorithms are very similar in the reasoning that
they do. The only difference is that the AST search filters out invalid
mutations just in time as they are found in LLVM bitcode, while the IR search
does this after the fact on the raw set of mutations that consists of both valid
and invalid mutations.

The IR search algorithm appeared earlier and is expected to be more
stable. The AST search algorithm is currently in development.

Supported mutation operators

See Supported Mutation Operators.

Reporting

Mull reports survived/killed mutations to the console by default. The
compiler-like warnings are printed to standard output.

Mull has an SQLite reporter: mutants and execution results are collected in
SQLite database. This kind of reporting makes it possible to make SQL queries
for a more advanced analysis of mutation results.

Mull supports reporting to HTML via
Mutation Testing Elements [https://github.com/stryker-mutator/mutation-testing-elements]. Mull generates JSON report which is given to Elements to generate HTML pages.

Platform support

Mull has a great support of macOS and various Linux systems across all modern
versions of LLVM from 11.0 to 15.0. All the new versions of LLVM are supported as
soon as they released.

Mull is reported to work on Windows Subsystem for Linux, but no official support
yet.

Test coverage

Mull has 3 layers of testing:

	Unit and integration testing on the level of C++ classes

	Integration testing against known real-world projects, such as OpenSSL

	Integration testing using LLVM Integrated Tester (LIT)

Advantages

The main advantage of Mull’s design and its approach to finding and doing
mutations is very good performance. Combined with incremental mutation testing
one can get mutation testing reports in the order of few seconds.

Another advantage is language agnosticism. The developers of Mull have been
focusing on C/C++ as the primary supported languages but the proof of concepts
for other compiled languages, such as Rust and Swift, have been developed.

A lot of development effort have been put into Mull in order to make it stable
across different operating systems and versions of LLVM. Combined with the
growing test coverage and highly modular design, Mull is a very stable,
well-tested and maintained system.

Known issue: Precision

Mull works on the level of LLVM bitcode and from there it gets its strengths
but also its main weakness: the precision of the information for mutations is
not as high as it is on the source code level. It is a broad area of work where
the developers of Mull have to combine the two levels of information about code:
LLVM bitcode and AST in order to make Mull both fast and precise. Among other
things the good suite of integration tests is aimed to provide Mull with a good
contract of supported mutations which are predictable and known to work without
any side effects.

Historical note: LLVM JIT deprecation (January 2021)

The usage of LLVM JIT has been deprecated and all LLVM JIT-related code has been
removed from Mull by January 2021.

This issue explains the reasons:
PSA: Moving away from JIT [https://github.com/mull-project/mull/issues/798].

Paper

Mull it over: mutation testing based on LLVM (preprint) [https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf]

@INPROCEEDINGS{8411727,
author={A. Denisov and S. Pankevich},
booktitle={2018 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW)},
title={Mull It Over: Mutation Testing Based on LLVM},
year={2018},
volume={},
number={},
pages={25-31},
keywords={just-in-time;program compilers;program testing;program verification;mutations;Mull;LLVM IR;mutated programs;compiled programming languages;LLVM framework;LLVM JIT;tested program;mutation testing tool;Testing;Tools;Computer languages;Instruments;Runtime;Computer crashes;Open source software;mutation testing;llvm},
doi={10.1109/ICSTW.2018.00024},
ISSN={},
month={April},}

Additional information about Mull

	2019 EuroLLVM Developers’ Meeting: A. Denisov “Building an LLVM-based tool: lessons learned” [https://www.youtube.com/watch?v=Yvj4G9B6pcU] and blog post
Building an LLVM-based tool. Lessons learned [https://lowlevelbits.org/building-an-llvm-based-tool.-lessons-learned/]

	Mutation Testing: implementation details [https://lowlevelbits.org/mutation-testing-implementation-details/]

	Mutation testing for Swift with Mull: how it could work. Looking for contributors [https://stanislaw.github.io/2018/09/03/mull-and-swift-how-it-almost-works.html]

	Mull meets Rust (LLVM Social Berlin #6, 23.02.2017) [https://www.youtube.com/watch?v=VasSufnFswc&feature=youtu.be]

Hacking On Mull

Note

Looking for help? We’ve got you covered! ❤️

Internals

Before you start hacking it may be helpful to get through the second and third sections of this paper:
Mull it over: mutation testing based on LLVM [https://lowlevelbits.org/pdfs/Mull_Mutation_2018.pdf]
from ICST 2018 [https://www.es.mdh.se/icst2018/].

Development Setup using Vagrant

Mull supplies a number of ready to use virtual machines based on VirtualBox [http://virtualbox.org].

The machines are managed using Vagrant [https://www.vagrantup.com] and Ansible [https://www.ansible.com].

Do the following steps to setup a virtual machine:

cd infrastructure
vagrant up debian

This command will:

	setup a virtual machine

	install required packages (cmake, sqlite3, pkg-config, …)

	download precompiled version of LLVM

	build Mull against the LLVM

	run Mull’s test suite

	run Mull against OpenSSL and fmtlib as an integration test

Once the machine is up and running you can start hacking over SSH:

vagrant ssh debian

Within the virtual machine Mull’s sources located under /opt/mull.

Alternatively, you can setup a remote toolchain within your IDE, if it supports
it.

When you are done feel free to drop the virtual machine:

vagrant destroy debian

You can see the full list of supplied VMs by running this command:

vagrant status

Local Development Setup

You can replicate all the steps managed by Vagrant/Ansible manually.

Required packages

Please, look at the corresponding Ansible playbook [https://github.com/mull-project/mull/tree/main/infrastructure]
(debian-playbook.yaml, macos-playbook.yaml, etc.) for the list of packages required on your OS.

LLVM

You need LLVM to build and debug Mull.
You can use any LLVM version between 11.0 and 15.0.

As of the version 0.14.0, Mull can be compiled against LLVM/Clang available
through your package manager (e.g. apt or homebrew).

Build Mull

Create a build folder and initialize build system:

git clone https://github.com/mull-project/mull.git --recursive
cd mull
mkdir build.dir
cd build.dir
cmake -DCMAKE_PREFIX_PATH=<cmake search paths> ..
make mull-runner-12
make mull-tests

The cmake search paths should point to the LLVM/Clang CMake config folders.
Some examples:

	llvm@12 installed via homebrew on macOS: "/usr/local/opt/llvm@12/lib/cmake/llvm/;/usr/local/opt/llvm@12/lib/cmake/clang/"

	llvm-12 installed via apt on Ubuntu: "/usr/lib/llvm-13/cmake/;/usr/lib/cmake/clang-13/"

If you are getting linker errors, then it is very likely related to the C++
ABI. Depending on your OS/setup you may need to tweak the _GLIBCXX_USE_CXX11_ABI (0 or 1):

cmake -DCMAKE_PREFIX_PATH=<cmake search paths> -DCMAKE_CXX_FLAGS=-D_GLIBCXX_USE_CXX11_ABI=0 ..

Support

There are several ways to get help with Mull:

	Open an issue on GitHub [https://github.com/mull-project/mull/issues/new] describing your problem.

	Come over to the Discord server [https://discord.gg/Hphp7dW] and ask your questions directly (do not hesitate to tag @AlexDenisov there).

We are also happy to accommodate commercial or academia users - reach out to the authors directly and we will set you up.

Index

Note

Looking for help? We’ve got you covered! ❤️

Compilation Database and Junk Mutations

Warning

Since the version 0.15.0, mull-cxx tool is deprecated [https://github.com/mull-project/mull/issues/945]
in favour of a compiler plugin: Mull IR Frontend [https://github.com/mull-project/mull/pull/938].

This tutorial covers mull-cxx tool and will be removed in the future.

It is recommended that you use the new Mull IR Frontend.

This tutorial shows how to apply Mull on a real-world project and
how to overcome typical issues you might face.

This tutorial uses fmtlib [https://github.com/fmtlib/fmt] as an example.

Get sources and build fmtlib:

git clone https://github.com/fmtlib/fmt.git
cd fmt
mkdir build.dir
cd build.dir
cmake \
 -DCMAKE_CXX_FLAGS="-fembed-bitcode -g -O0" \
 -DCMAKE_BUILD_TYPE=Debug \
 -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
make core-test

Note: last tested against commit 018688da2a58ba25cdf173bd899734f755adb11a

Run Mull against the core-test:

mull-cxx -mutators=cxx_add_to_sub ./bin/core-test

Right now you should see a weird and long error message by the end of execution.
Here is a snippet:

/// skipped
[info] Applying mutations (threads: 1)
 [################################] 10/10. Finished in 11ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 5671ms
[info] Link mutated program (threads: 1)
[error] Cannot link program
status: Failed
time: 20096ms
exit: -60
command: clang /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-b5963a.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-62252e.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-22ed08.o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-84dd4a.o -o /var/folders/1s/hps840w156xfn_m__h2m17880000gp/T/mull-84a88a.exe
stdout:
stderr: Undefined symbols for architecture x86_64:
 "std::logic_error::what() const", referenced from:
 vtable for assertion_failure in mull-b5963a.o
 "std::runtime_error::what() const", referenced from:
 vtable for testing::internal::GoogleTestFailureException in mull-22ed08.o
 vtable for fmt::v7::format_error in mull-84dd4a.o
 vtable for fmt::v7::system_error in mull-84dd4a.o
/// skipped

In order to do the job, Mull takes the executable, deconstructs it into a number
of pieces, inserts mutations into those pieces, and then constructs the executable
again. In order to re-build the mutated program, Mull needs a linker. As a safe default,
it just uses clang which works in most of the cases. However, in this case
we deal with C++ which needs a corresponding C++ linker. Instead we should be
using clang++, which will do the job just fine.

Note: on Linux you may have to specify clang-<version> or clang++-<version>,
where <version> corresponds to the version of clang installed

Try this:

mull-cxx --linker=clang++ -mutators=cxx_add_to_sub ./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 194ms
[info] Loading bitcode files (threads: 4)
 [################################] 4/4. Finished in 484ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 12ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Applying function filter: no debug info (threads: 8)
 [################################] 12812/12812. Finished in 26ms
[info] Applying function filter: file path (threads: 8)
 [################################] 12418/12418. Finished in 68ms
[info] Instruction selection (threads: 8)
 [################################] 12418/12418. Finished in 291ms
[info] Searching mutants across functions (threads: 8)
 [################################] 12418/12418. Finished in 42ms
[info] Applying filter: no debug info (threads: 8)
 [################################] 863/863. Finished in 1ms
[info] Applying filter: file path (threads: 8)
 [################################] 863/863. Finished in 11ms
[info] Applying filter: junk (threads: 8)
/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc:39:10: fatal error: 'gtest.h' file not found
#include "gtest.h"
 ^~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./gmock-gtest-all.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc:8:10: fatal error: 'algorithm' file not found
#include <algorithm>
 ^~~~~~~~~~~
 [--------------------------------] 1/863
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/test/./core-test.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"
 ^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.
 [################################] 863/863. Finished in 160ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 0ms
[info] Cloning functions for mutation (threads: 4)
 [################################] 4/4. Finished in 51ms
[info] Removing original functions (threads: 4)
 [################################] 4/4. Finished in 43ms
[info] Redirect mutated functions (threads: 4)
 [################################] 4/4. Finished in 12ms
[info] Applying mutations (threads: 1)
 [################################] 10/10. Finished in 10ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 5623ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 402ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 597ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 30ms
[info] Running mutants (threads: 8)
 [################################] 10/10. Finished in 157ms
[info] Survived mutants (10/10):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:554:67: warning: Survived: Replaced + with - [cxx_add_to_sub]
 static_cast<unsigned int>(kMaxRandomSeed)) +
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:566:30: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int next_seed = seed + 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:734:37: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int last_in_range = begin + range_width - 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:6283:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:9763:53: warning: Survived: Replaced + with - [cxx_add_to_sub]
 const int actual_to_skip = stack_frames_to_skip + 1;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:11208:26: warning: Survived: Replaced + with - [cxx_add_to_sub]
 argv[j] = argv[j + 1];
 ^
[info] Mutation score: 0%
[info] Total execution time: 8252ms

Almost everything works fine, except of those weird warnings:

/tmp/sc-0Puh0WBoL/fmt/src/format.cc:8:10: fatal error: 'fmt/format-inl.h' file not found
#include "fmt/format-inl.h"
 ^~~~~~~~~~~~~~~~~~
[warning] Cannot parse file: '/tmp/sc-0Puh0WBoL/fmt/src/format.cc':
mull-cxx /tmp/sc-0Puh0WBoL/fmt/src/format.cc
Make sure that the flags provided to Mull are the same flags that are used for normal compilation.

That is because of junk mutations.

Junk Mutations

Not every mutation found at Bitcode level can be represented at the source
level. A mutation is called junk mutation if it exists on the bitcode level, but
cannot be achieved on the source code level. Mull filters them out by looking back at
the source code. It tries its best, but sometimes it cannot parse the file because it
doesn’t have enough information. To give all the information needed you should
provide compilation database [https://clang.llvm.org/docs/JSONCompilationDatabase.html],
or compilation flags, or both.

Please, note: Clang adds implicit header search paths, which must be added
explicitly via -compilation-flags. You can get them using the following
commands, for C and C++ respectively:

> clang -x c -c /dev/null -v
... skipped
#include <...> search starts here:
 /usr/local/include
 /opt/llvm/10.0.0/lib/clang/10.0.0/include
 /System/Library/Frameworks (framework directory)
 /Library/Frameworks (framework directory)
End of search list.

> clang++ -x c++ -c /dev/null -v
#include <...> search starts here:
 /opt/llvm/10.0.0/bin/../include/c++/v1
 /usr/local/include
 /opt/llvm/10.0.0/lib/clang/10.0.0/include
 /System/Library/Frameworks (framework directory)
 /Library/Frameworks (framework directory)
End of search list.

The paths on your machine might be different, but based on the output above you need the following include dirs:

/opt/llvm/10.0.0/include/c++/v1
/usr/local/include
/opt/llvm/10.0.0/lib/clang/10.0.0/include
/usr/include

Here is how you can run Mull with junk detection enabled:

mull-cxx \
 -linker=clang++ \
 -mutators=cxx_add_to_sub \
 -compdb-path compile_commands.json \
 -compilation-flags="\
 -isystem /opt/llvm/10.0.0/include/c++/v1 \
 -isystem /opt/llvm/10.0.0/lib/clang/10.0.0/include \
 -isystem /usr/include \
 -isystem /usr/local/include" \
 ./bin/core-test

You should see similar output:

[info] Extracting bitcode from executable (threads: 1)
 [################################] 1/1. Finished in 182ms
[info] Loading bitcode files (threads: 4)
 [################################] 4/4. Finished in 409ms
[info] Sanity check run (threads: 1)
 [################################] 1/1. Finished in 11ms
[info] Gathering functions under test (threads: 1)
 [################################] 1/1. Finished in 5ms
[info] Applying function filter: no debug info (threads: 8)
 [################################] 12812/12812. Finished in 22ms
[info] Applying function filter: file path (threads: 8)
 [################################] 12418/12418. Finished in 71ms
[info] Instruction selection (threads: 8)
 [################################] 12418/12418. Finished in 270ms
[info] Searching mutants across functions (threads: 8)
 [################################] 12418/12418. Finished in 43ms
[info] Applying filter: no debug info (threads: 8)
 [################################] 863/863. Finished in 12ms
[info] Applying filter: file path (threads: 8)
 [################################] 863/863. Finished in 10ms
[info] Applying filter: junk (threads: 8)
 [################################] 863/863. Finished in 4531ms
[info] Prepare mutations (threads: 1)
 [################################] 1/1. Finished in 1ms
[info] Cloning functions for mutation (threads: 4)
 [################################] 4/4. Finished in 439ms
[info] Removing original functions (threads: 4)
 [################################] 4/4. Finished in 241ms
[info] Redirect mutated functions (threads: 4)
 [################################] 4/4. Finished in 12ms
[info] Applying mutations (threads: 1)
 [################################] 350/350. Finished in 11ms
[info] Compiling original code (threads: 4)
 [################################] 4/4. Finished in 4570ms
[info] Link mutated program (threads: 1)
 [################################] 1/1. Finished in 292ms
[info] Warm up run (threads: 1)
 [################################] 1/1. Finished in 614ms
[info] Baseline run (threads: 1)
 [################################] 1/1. Finished in 30ms
[info] Running mutants (threads: 8)
 [################################] 350/350. Finished in 4421ms
[info] Survived mutants (305/350):
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:1758:34: warning: Survived: Replaced + with - [cxx_add_to_sub]
 state_ = (1103515245U * state_ + 12345U) % kMaxRange;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2275:55: warning: Survived: Replaced + with - [cxx_add_to_sub]
 return static_cast<TimeInMillis>(now.tv_sec) * 1000 + now.tv_usec / 1000;
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:18: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2922:72: warning: Survived: Replaced + with - [cxx_add_to_sub]
 } else if (i + 1 < num_chars && IsUtf16SurrogatePair(str[i], str[i + 1])) {
 ^
/tmp/sc-0Puh0WBoL/fmt/test/gmock-gtest-all.cc:2924:63: warning: Survived: Replaced + with - [cxx_add_to_sub]
 CreateCodePointFromUtf16SurrogatePair(str[i], str[i + 1]);
 ^

/// skipped

/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1334:68: warning: Survived: Replaced + with - [cxx_add_to_sub]
 int num_bigits() const { return static_cast<int>(bigits_.size()) + exp_; }
 ^
/tmp/sc-0Puh0WBoL/fmt/include/fmt/format-inl.h:1284:53: warning: Survived: Replaced + with - [cxx_add_to_sub]
 double_bigit result = bigits_[i] * wide_value + carry;
 ^
[info] Mutation score: 12%
[info] Total execution time: 16280ms

In the end, 305 out of 350 mutants survived. Why so? One of the reasons is
because most of the mutants are unreachable by the test suite.
You can learn how to handle this issue in the next tutorial: Keeping mutants under control

Note

Looking for help? We’ve got you covered! ❤️

	--test-program path

	Path to a test program

	--workers number

	How many threads to use

	--timeout number

	Timeout per test run (milliseconds)

	--report-name filename

	Filename for the report (only for supported reporters). Defaults to <timestamp>.<extension>

	--report-dir directory

	Where to store report (defaults to ‘.’)

	--report-patch-base directory

	Create Patches relative to this directory (defaults to git-project-root if available, else absolute path will be used)

	--reporters reporter

	Choose reporters:

	IDE

	Prints compiler-like warnings into stdout

	SQLite

	Saves results into an SQLite database

	Elements

	Generates mutation-testing-elements compatible JSON file

	Patches

	Generates patch file for each mutation

	GithubAnnotations

	Print GithubAnnotations for mutants

	--ide-reporter-show-killed

	Makes IDEReporter to also report killed mutations (disabled by default)

	--debug

	Enables Debug Mode: more logs are printed

	--strict

	Enables Strict Mode: all warning messages are treated as fatal errors

	--allow-surviving

	Do not treat mutants surviving as an error

	--no-test-output

	Does not capture output from test runs

	--no-mutant-output

	Does not capture output from mutant runs

	--no-output

	Combines -no-test-output and -no-mutant-output

	--ld-search-path directory

	Library search path

	--coverage-info string

	Path to the coverage info file (LLVM’s profdata)

	--debug-coverage

	Print coverage ranges

	Operator Name

	Operator Semantics

	cxx_add_assign_to_sub_assign

	Replaces += with -=

	cxx_add_to_sub

	Replaces + with -

	cxx_and_assign_to_or_assign

	Replaces &= with |=

	cxx_and_to_or

	Replaces & with |

	cxx_assign_const

	Replaces ‘a = b’ with ‘a = 42’

	cxx_bitwise_not_to_noop

	Replaces ~x with x

	cxx_div_assign_to_mul_assign

	Replaces /= with *=

	cxx_div_to_mul

	Replaces / with *

	cxx_eq_to_ne

	Replaces == with !=

	cxx_ge_to_gt

	Replaces >= with >

	cxx_ge_to_lt

	Replaces >= with <

	cxx_gt_to_ge

	Replaces > with >=

	cxx_gt_to_le

	Replaces > with <=

	cxx_init_const

	Replaces ‘T a = b’ with ‘T a = 42’

	cxx_le_to_gt

	Replaces <= with >

	cxx_le_to_lt

	Replaces <= with <

	cxx_logical_and_to_or

	Replaces && with ||

	cxx_logical_or_to_and

	Replaces || with &&

	cxx_lshift_assign_to_rshift_assign

	Replaces <<= with >>=

	cxx_lshift_to_rshift

	Replaces << with >>

	cxx_lt_to_ge

	Replaces < with >=

	cxx_lt_to_le

	Replaces < with <=

	cxx_minus_to_noop

	Replaces -x with x

	cxx_mul_assign_to_div_assign

	Replaces *= with /=

	cxx_mul_to_div

	Replaces * with /

	cxx_ne_to_eq

	Replaces != with ==

	cxx_or_assign_to_and_assign

	Replaces |= with &=

	cxx_or_to_and

	Replaces | with &

	cxx_post_dec_to_post_inc

	Replaces x– with x++

	cxx_post_inc_to_post_dec

	Replaces x++ with x–

	cxx_pre_dec_to_pre_inc

	Replaces –x with ++x

	cxx_pre_inc_to_pre_dec

	Replaces ++x with –x

	cxx_rem_assign_to_div_assign

	Replaces %= with /=

	cxx_rem_to_div

	Replaces % with /

	cxx_remove_negation

	Replaces !a with a

	cxx_remove_void_call

	Removes calls to a function returning void

	cxx_replace_scalar_call

	Replaces call to a function with 42

	cxx_rshift_assign_to_lshift_assign

	Replaces >>= with <<=

	cxx_rshift_to_lshift

	Replaces << with >>

	cxx_sub_assign_to_add_assign

	Replaces -= with +=

	cxx_sub_to_add

	Replaces - with +

	cxx_xor_assign_to_or_assign

	Replaces ^= with |=

	cxx_xor_to_or

	Replaces ^ with |

	negate_mutator

	Negates conditionals !x to x and x to !x

	scalar_value_mutator

	Replaces zeros with 42, and non-zeros with 0

	Groups:
	
	cxx_all

	cxx_assignment, cxx_increment, cxx_decrement, cxx_arithmetic, cxx_comparison, cxx_boundary, cxx_bitwise, cxx_calls

	cxx_arithmetic

	cxx_minus_to_noop, cxx_add_to_sub, cxx_sub_to_add, cxx_mul_to_div, cxx_div_to_mul, cxx_rem_to_div

	cxx_arithmetic_assignment

	cxx_add_assign_to_sub_assign, cxx_sub_assign_to_add_assign, cxx_mul_assign_to_div_assign, cxx_div_assign_to_mul_assign, cxx_rem_assign_to_div_assign

	cxx_assignment

	cxx_bitwise_assignment, cxx_arithmetic_assignment, cxx_const_assignment

	cxx_bitwise

	cxx_bitwise_not_to_noop, cxx_and_to_or, cxx_or_to_and, cxx_xor_to_or, cxx_lshift_to_rshift, cxx_rshift_to_lshift

	cxx_bitwise_assignment

	cxx_and_assign_to_or_assign, cxx_or_assign_to_and_assign, cxx_xor_assign_to_or_assign, cxx_lshift_assign_to_rshift_assign, cxx_rshift_assign_to_lshift_assign

	cxx_boundary

	cxx_le_to_lt, cxx_lt_to_le, cxx_ge_to_gt, cxx_gt_to_ge

	cxx_calls

	cxx_remove_void_call, cxx_replace_scalar_call

	cxx_comparison

	cxx_eq_to_ne, cxx_ne_to_eq, cxx_le_to_gt, cxx_lt_to_ge, cxx_ge_to_lt, cxx_gt_to_le

	cxx_const_assignment

	cxx_assign_const, cxx_init_const

	cxx_decrement

	cxx_pre_dec_to_pre_inc, cxx_post_dec_to_post_inc

	cxx_default

	cxx_increment, cxx_arithmetic, cxx_comparison, cxx_boundary

	cxx_increment

	cxx_pre_inc_to_pre_dec, cxx_post_inc_to_post_dec

	cxx_logical

	cxx_logical_and_to_or, cxx_logical_or_to_and, cxx_remove_negation

	experimental

	negate_mutator, scalar_value_mutator, cxx_logical

Note

Looking for help? We’ve got you covered! ❤️

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mull’s documentation!

 		
 Getting Started

 		
 Features

 		
 Introduction to Mutation Testing

 		
 Installation

 		
 Install on Ubuntu

 		
 Install on macOS

 		
 Tutorials

 		
 Hello World Example

 		
 Step 1: Checking version

 		
 Step 2: Enabling compiler plugin

 		
 Step 3: Killing mutants, one survived

 		
 Step 4: Killing mutants again, all killed

 		
 Summary

 		
 Next Steps

 		
 Makefile Integration: OpenSSL

 		
 Step 1. Check out the source code

 		
 Step 2. Create sample Mull config

 		
 Step 3. Configure and build OpenSSL

 		
 Step 4. Run Mull against OpenSSL’s tests

 		
 CMake Integration: fmtlib

 		
 Step 1. Check out the source code

 		
 Step 2. Create sample Mull config

 		
 Step 3. Configure and build fmtlib

 		
 Step 4. Run Mull against fmtlib tests

 		
 Step 5. Filter out unreachable mutants

 		
 Keeping mutants under control

 		
 OpenSSL Example

 		
 File Path Filters

 		
 Code Coverage Filter

 		
 Non-standard test suites

 		
 Tests in interpreted languages

 		
 Working with SQLite report

 		
 Preparing the database

 		
 Database Schema

 		
 Supported Mutation Operators

 		
 Incremental mutation testing

 		
 Typical use cases

 		
 Command Line Reference

 		
 mull-runner

 		
 Configuring Mull

 		
 How Mull works

 		
 Design

 		
 Mutations search

 		
 Supported mutation operators

 		
 Reporting

 		
 Platform support

 		
 Test coverage

 		
 Advantages

 		
 Known issue: Precision

 		
 Historical note: LLVM JIT deprecation (January 2021)

 		
 Paper

 		
 Additional information about Mull

 		
 Hacking On Mull

 		
 Internals

 		
 Development Setup using Vagrant

 		
 Local Development Setup

 		
 Required packages

 		
 LLVM

 		
 Build Mull

 		
 Support

